

Accessibility guidelines

for HTML and CSS

Date Version Author Statuts / comments

Nov. 3rd, 2018 3.0 Atalan

Jan 21, 2019 3.1 Atalan Minor changes in text of the 6.2 guideline.

August 10, 2020 4.0 Atalan Major updates to ensure compliance with

RGAA 4 and WCAG 2.1 (levels A and AA).

In partnership with :

Air Liquide – Atos – BNP Paribas – Capgemini – EDF – Generali – L’Oréal – SFR – SNCF

– Société Générale – SPIE – Total

Observers :

AbilityNet (UK) – Agence Entreprises & Handicap – AnySurfer (Belgium) – Association

des Paralysés de France (APF) – Association Valentin Haüy (AVH) – CIGREF – Design

For All Foundation (Spain) – ESSEC – Handirect – Hanploi – Sciences Po – Télécom

ParisTech

Table of contents

TABLE OF CONTENTS ... 2

INTRODUCTION .. 6

Context and objectives .. 6

Who should read this document, and how to use it? ... 6

Contact .. 6

License agreement .. 7

1. GENERAL STRUCTURE ... 8

1.1 Add structure to the header area using <header role="banner"> 8

1.2 Mark up the search field with role="search" .. 8

1.3 Structure the main content area with <main role="main"> 8

1.4 Structure information about the website with <footer

role="contentinfo"> ... 9

1.5 Structure primary and secondary navigation menus with <nav

role="navigation"> .. 9

1.6 Structure navigation menus with lists ... 10

Why should I structure lists? ... 10

1.7 Create a logical and thorough hierarchy for headings, using <h1> to <h6> tags ... 11

2. PAGE TITLE .. 16

2.1 Provide a descriptive <title> element on each page .. 16

3. LANGUAGES .. 17

3.1 Provide the primary language of the page with the lang attribute on the

<html> tag ... 17

3.2 Use the lang attribute to indicate a change of language ... 17

4. HTML GRAMMAR AND SEMANTICS ... 19

4.1 Write a valid HTML code following the formal grammar rules of the DOCTYPE used ... 19

4.2 Use HTML elements for their semantic purpose ... 19

5. LINKS AND BUTTONS .. 20

5.1 Distinguish buttons from links ... 20

Buttons .. 20

Links ... 20

5.2 Complete non-explicit links and buttons using hidden text, aria-label or

title. ... 20

The aria-label attribute.. 20

The title attribute ... 21

5.3 Don't use the aria-label or title attributes on links and buttons that are

already explicit ... 22

6. IMAGES AND ICONS .. 23

6.1 Managing the alt attribute of the and <input type="image" /> tags 23

Decorative/ambient .. 23

“Simple” informative ... 23

“Complex” informative ... 24

Unlabeled links or buttons .. 25

<input type="image" /> ... 26

6.2 Managing alternative text on SVG (Scalable Vector Graphics) 26

Decorative/ambient <svg> ... 26

“Simple” informative <svg> .. 27

“Complex” informative <svg> .. 28

<svg> links and buttons alone ... 29

6.3 Managing alternative text on Icon Fonts .. 30

Decorative/ambient icons ... 30

Informative icons .. 30

Links or buttons icons ... 31

6.4 Tag images that have captions with <figure role="figure"> and

<figcaption> ... 32

Example 1 ... 32

Example 2 ... 33

7. FORMS ... 34

7.1 Use the <label> tag with the for and id attributes to label form fields with a

visible name .. 34

7.2 Use the title attribute to label form fields that don't have a visible label........ 34

7.3 Use the autocomplete attribute to facilitate auto-fill .. 35

7.4 Add help text directly to the <label> tags ... 35

7.5 Add required or aria-required="true" to mandatory fields 37

7.6 Add error messages and correction suggestions directly to the <label> tag ... 37

7.7 Group and label related fields with <fieldset> and <legend> 39

8. LISTS .. 41

8.1 Tag unordered lists with and .. 41

What are the advantages? .. 41

8.2 Tag ordered lists with and .. 41

What are the advantages? .. 42

8.3 Mark up description lists with <dl>, <dt> and <dd> ... 42

What are the advantages? .. 43

9. TABLES ... 44

9.1 Use <caption> to tag data table captions.. 44

9.2 Mark up the row and column header cells with <th> ... 44

9.3 In simple data tables use the scope attribute to associate data cells with their

corresponding headers ... 45

9.4 Add role="presentation" to each layout <table> .. 46

10. USING CSS ... 47

10.1 Use CSS to lay out text ... 47

10.2 Ensure that content can be read when images are turned off 47

10.3 Ensure that content is understandable when CSS is disabled 48

Examples ... 48

11. ZOOM AND FONT SIZES ... 51

11.1 Use only relative font sizes (rem, em, %, etc.) ... 51

11.2 Ensure content readability even when font size is doubled... 51

12. KEYBOARD NAVIGATION ... 52

12.1 Ensure the proper functioning of the interface using either the mouse or

keyboard .. 52

12.2 Ensure that the tab order follows the logical reading order .. 52

12.3 Ensure that keyboard focus is visible .. 53

12.4 Introduce “skip links” .. 53

13. IFRAMES .. 55

13.1 Populate the title attribute on each <iframe ... 55

14. ADDITIONAL GUIDELINES .. 56

Tag block quotations using <blockquote> .. 56

Tag online quotations using <q> ... 56

Write the HTML code in a logical reading order ... 57

Indicate in the alternative text for visual CAPTCHA where to find the non-visual version .. 57

Do not use tags or attributes specific to data tables in layout table 58

Plan alternative text for each type of multimedia content (<video>, <audio>,

<object>, <embed>, etc.) ... 58

Populate the alt attribute of each mapped image and its <area /> tags 59

In complex tables, use the headers and id attributes to associate header cells with

their corresponding data cells ... 59

Ensure that the HTML flow is consistent from one page to the next 60

Make sure layout tables follow the right reading order .. 61

ADDITIONAL RECOMMENDATIONS ... 63

Tag abbreviations with <abbr>.. 63

Combine adjacent links pointing to the same page ... 63

In forms with multiple steps, identify the current step using aria-current="step" 64

Identify the current position in navigation systems with aria-current 65

Example in a menu .. 65

Example in a pagination system ... 66

Example in a breadcrumb trail .. 66

Add file format and size to all Download links and buttons ... 66

Update the page <title> when an error or confirmation message is displayed 67

Do not disable the zoom with the user-scalable property .. 68

Do not use CSS to display images that carry information .. 68

Logically organize the items of dropdown lists ... 69

Send a notification when a new window is opened .. 70

Use only relative sizes (rem, em, %, etc.) for media query breakpoints 71

Make sure that hidden content is translated .. 71

July 12, 2021
Page 6/71

Accessibility guidelines for HTML and CSS

Introduction

Context and objectives

This document provides guidelines for making HTML and CSS integration more

accessible.

This manual is part of a set of four complementary manuals that can be downloaded

from the AcceDe Web website at www.accede-web.com:

• Graphic and functional accessibility guidelines.

• HTML and CSS accessibility guidelines (this manual).

• Main rich interface components accessibility guidelines.

• Accessibility guidelines for editors (template).

Who should read this document, and how to use it?

This document should be provided to stakeholders and/or contractors implementing

the technical specifications, and HTML/CSS integration. It complements project

specifications. The recommendations may be supplemented or removed depending

on the context of use, such work can be carried out by the project owner.

These recommendations must be used when creating HTML/CSS. Some of them are

used for dynamic content, for example, when templates are created for a content

management system (CMS).

 Note

The online version of these guidelines comes with many examples, links to

complementary resources, etc. It is available at: www.accede-web.com/en/.

Contact

Please send any comments about this document to Atalan, the initiator of the AcceDe

Web project, at the following email address: accede@atalan.ca.

You can also find more information on the Guidelines methodology of the AcceDe

Web project on the website www.accede-web.com.

https://www.accede-web.com/en/guidelines/
https://www.accede-web.com/en/
mailto:accede@atalan.ca
http://www.accede-web.com/en/

July 12, 2021
Page 7/71

Accessibility guidelines for HTML and CSS

License agreement

This document is subject to the terms of the Creative Commons BY 3.0 license.

You are free to:

• copy, distribute and communicate the work to the public,

• change this work,

under the following conditions:

• Mention of the authorship if the document is modified:

o You must include the Atalan and AcceDe Web logos and references,

indicate that the document has been modified, and add a link to the

original work at www.accede-web.com/en/.

o You must not under any circumstance cite the name of the original

author in a way that suggests that he or she endorses you or supports

your use of the work without his or her express agreement.

o You must not under any circumstance cite the name of partner

companies (Air Liquide, Atos, BNP Paribas, Capgemini, EDF, Generali,

L’Oréal, SFR, SNCF, Société Générale, SPIE and Total), or the

organizations which have supported this initiative (AbilityNet, Agence

Entreprises & Handicap, AnySurfer, Association des Paralysés de France

(APF), CIGREF, Design For All Foundation, ESSEC, Handirect, Hanploi,

Sciences Po and Télécom ParisTech) without their express agreement.

The Atalan and AcceDe Web logos and trademarks are registered and are the

exclusive property of Atalan. The logos and trademarks of partner companies are the

exclusive property of Air Liquide, Atos, BNP Paribas, Capgemini, EDF, Generali,

L’Oréal, SFR, SNCF, Société Générale, SPIE and Total.

http://creativecommons.org/licenses/by/3.0/
http://www.accede-web.com/en/

July 12, 2021
Page 8/71

Accessibility guidelines for HTML and CSS

1. General structure

1.1 Add structure to the header area using
<header role="banner">

Mark up the main header section (i.e. logo, search field, etc.) with <header

role="banner">.

 Warning

While the <header> tag may be used several times in a web page, role="banner"

must only be used once per web page.

 Note

It is perfectly acceptable to nest several ARIA roles: <div role="search"> into

<header role="banner">, for example.

<header role="banner">

 <div role="search" … > […] </div>

 […]

</header>

1.2 Mark up the search field with role="search"

The website search field must be identified with role="search".

 <form role="search" … >

 <input type="text" title="Keyword Search" />

 <input type="submit" value="Search" />

 </form>

1.3 Structure the main content area with <main role="main">

The main content area of the page must be marked up with <main role="main">.

 Warning

A page must contain only one visible <main role="main"> tag.

<header role="banner">[…]</header>

<nav role="navigation">[…]</nav>

<main role="main">[…]</main>

<footer role="contentinfo">[…]</footer>

July 12, 2021
Page 9/71

Accessibility guidelines for HTML and CSS

1.4 Structure information about the website with
<footer role="contentinfo">

Information about the website such as the copyright and the “Legal terms and

conditions” and “Credits” links must be structured with <footer

role="contentinfo">.

 Warning

A page can contain only one role="contentinfo".

<header role="banner">[…]</header>

<nav role="navigation">[…]</nav>

<main role="main">[…]</main>

<footer role="contentinfo">

 Sitemap

 Credits

 Terms and Conditions

 <p>© Company/Site name</p>

</footer>

1.5 Structure primary and secondary navigation menus with
<nav role="navigation">

Primary and secondary navigation menus must be marked up with <nav

role="navigation">.

 Note

The <nav> tag is reserved for website’s internal links.

For example:

• The main menu.

• The sub-menu.

• The breadcrumb.

• The search results page number.

In other words, it must not be used to mark up a list of external links, such as a list of

social media links.

July 12, 2021
Page 10/71

Accessibility guidelines for HTML and CSS

 Tip

Good practice is to add an aria-label attribute to the <nav

role="navigation"> tag to specify the type of navigation system.

<header role="banner">[…]</header>

<nav role="navigation" aria-label="Primary menu">[…]</nav>

<nav role="navigation" aria-label="Secondary menu">[…]</nav>

<main role="main">

 <nav role="navigation" aria-label="You are here">[…]</nav>

 […]

</main>

<footer role="contentinfo">[…]</footer>

1.6 Structure navigation menus with lists

Use unordered list elements and to mark up navigation menus.

For primary menus with several levels, be sure to nest the links appropriately:

<nav role="navigation" aria-label="Main menu">

 First menu item

 Second menu item

 First sub-menu item

 Second sub-menu item

 Third menu item

</nav>

Why should I structure lists?

• Structuring lists is important for people who use screen readers (blind and

visually-impaired people). When readers come across a list, structuring enables

them to:

• Navigate from list to list on a page.

• Know, from the start, the number of items on the page.

• Navigate more easily through the list:

o Go directly to the end of the list if the content does not interest them.

o Easily go back to the beginning of the list.

July 12, 2021
Page 11/71

Accessibility guidelines for HTML and CSS

1.7 Create a logical and thorough hierarchy for headings, using

<h1> to <h6> tags

On each page, headings must be tagged from <h1> to <h6>. The structure of the

headings must be both logical and thorough.

In other words:

• There must not be any "jumps" or inconsistencies in the heading structure (i.e.

from <h1> to <h3> without <h2> in between).

• All elements that function as headings must be marked up using heading tags.

July 12, 2021
Page 12/71

Accessibility guidelines for HTML and CSS

 Notes

• Several <h1> elements can be used on a page if there are primary headings.

• Good accessibility practice is to avoid using hidden headings.

 Tip

To create a logical and understandable heading hierarchy, imagine the headings of

the page as a "Table of Contents". Is it logical? thorough?

 Note

The ARIA heading role with the aria-level attribute (with a value of 1 to 6) will

override the semantics of any native HTML tag/ makes it possible to assign a title

value to any HTML tag.

For example:

• <p role="heading" aria-level="1">Heading Level 1</p> is

semantically equivalent to <h1>Heading Level 1</h1>.

• <div role="heading" aria-level="3">Heading Level 3</div> is

semantically equivalent to <h3>Heading Level 3</h3>.

However, this technique is not optimal for accessibility, it should only be used as a

last resort.

July 12, 2021
Page 13/71

Accessibility guidelines for HTML and CSS

July 12, 2021
Page 14/71

Accessibility guidelines for HTML and CSS

Three examples of heading structures for this page are provided below. The first two

are correct, but the last one is not.

Example 1 (correct)

<h1><img src="GreenPeace.png" alt="GreenPeace (go

back to homepage)" /></h1>

[…]

<h2>In the spotlight</h2>

[…]

<h3>The Canadian government should not be writing blank

cheques for Texas oil-giant</h3>

[…]

<h2>The latest updates</h2>

[…]

<h3>Plastic pollution reaches the Antarctic</h3>

[…]

<h3>Captain Crudeau’s Colossal Mistake</h3>

[…]

<h3>The Canadian government should not be writing blank

cheques for Texas oil-giant</h3>

[…]

<h2>Multimedia</h2>

[…]

<h2>Join the movement</h2>

[…]

<h2>Become volunteer</h2>

[…]

In this example of HTML code, the heading structure is logical and thorough

Example 2 (correct)

<img src="GreenPeace.png" alt="GreenPeace (go back

to homepage)" />

[…]

<h1>In the spotlight</h1>

[…]

<h2>The Canadian government should not be writing blank

cheques for Texas oil-giant</h2>

[…]

<h1>The latest updates</h1>

[…]

<h2>Plastic pollution reaches the Antarctic</h2>

[…]

<h2>Captain Crudeau’s Colossal Mistake</h2>

[…]

<h2>The Canadian government should not be writing blank

cheques for Texas oil-giant</h2>

[…]

July 12, 2021
Page 15/71

Accessibility guidelines for HTML and CSS

<h1>Multimedia</h1>

[…]

<h1>Join the movement</h1>

[…]

<h1>Become volunteer</h1>

[…]

In this example of HTML code, the heading structure is also logical and thorough.

Note that other heading structures are possible.

Example 3 (incorrect)

<img src="GreenPeace.png" alt="GreenPeace (go back

to homepage)" />

[…]

<h1>In the spotlight</h1>

[…]

<h2>The Canadian government should not be writing blank

cheques for Texas oil-giant</h2>

[…]

<h1>The latest updates</h1>

[…]

<h4>Plastic pollution reaches the Antarctic</h4>

[…]

<h4>Captain Crudeau’s Colossal Mistake</h4>

[…]

<h4>The Canadian government should not be writing blank

cheques for Texas oil-giant</h4>

[…]

<h1>Multimedia</h1>

[…]

<p>Join the movement</p>

[…]

<p>Become volunteer</p>

[…]

In this example of HTML code, the heading structure is incorrect because it includes

“jumps” and inconsistencies (sharp transition from <h1> to <h4>).

Also, “Join the movement” and “Become a volunteer” are not tagged as a heading.

July 12, 2021
Page 16/71

Accessibility guidelines for HTML and CSS

2. Page title

2.1 Provide a descriptive <title> element on each page

On each page, the <title> element must include a descriptive title. It must, at least,

provide both the name of the page and the name of the website.

 Tip

• The name of the current page should come first in the <title> element before

other information. For example, <title>[Current page name] | [Website

name]</title>.

• Good practice is to ensure that the content in the <title> element is consistent

throughout the entire website.

 Note

In certain circumstances, the content is modified when the page is reloaded. This may

be the case, for example:

• When pagination is used.

• When a search term is entered into a search field.

The title of the affected page must be modified. For example:

<title>Search results for [Search term] (page 3/7) | [Site

name]</title>

July 12, 2021
Page 17/71

Accessibility guidelines for HTML and CSS

3. Languages

3.1 Provide the primary language of the page with the lang

attribute on the <html> tag

In order to ensure good rendering of text content, the primary language must be

declared on each page.

Use the lang attribute on the <html> tag.

For example, for an English page use:

<html lang="en">

 Tip

To populate the lang attribute, a two-letter language code (or, if it is not available,

three-letter code) must be used.

Some common codes are:

• en for English.

• fr for French.

• es for Spanish.

• de for German.

• it for Italian.

The others are available here: exhaustive list of authorized language codes.

3.2 Use the lang attribute to indicate a change of language

If some of the content is in a language other than the primary language of the page,

it must be identified using the lang attribute.

For example, on an English page:

French version

 Tip

If the foreign language content is not tagged directly, use a or <div> tag

and populate the lang attribute.

https://www.loc.gov/standards/iso639-2/php/English_list.php

July 12, 2021
Page 18/71

Accessibility guidelines for HTML and CSS

 Note

It is not necessary to announce a change of language for:

• Proper names

• Foreign words that have been incorporated into the dictionary of the primary

language.

• Foreign words that are pronounced and fully understood with the accent of the

main language (i.e. “RSVP”, if the primary language is English).

July 12, 2021
Page 19/71

Accessibility guidelines for HTML and CSS

4. HTML Grammar and Semantics

4.1 Write a valid HTML code following the formal grammar rules

of the DOCTYPE used

Use a valid DOCTYPE for each page and make sure the generated HTML code

complies with the formal grammar rules of that DOCTYPE (the choice of DOCTYPE is

open).

 Note

This DOCTYPE must be placed before the <html> tag.

The following aspects of formal grammar are particularly important:

• Elements are nested according to their specifications.

• Elements have complete start and end tags

• There are no duplicate attributes on an element.

• Each id attribute has a unique value on the page.

 Warning

Obsolete HTML elements and attributes and/or those intended for formatting

purposes only must not be used.

4.2 Use HTML elements for their semantic purpose

HTML elements must be used for their semantic purpose and not solely for the visual

aspect of content.

Tags Use it to Don’t use it to

<a> Mark up a hypertext link
Create an action button with no

background or border

<hr />
Create a semantic division between distinct

groups of content in a text box.
Create a visual separator line

<fieldset>
Group form elements which are related to

one another
Create a visual border

<q> Mark up a short quote
Place quotation marks

around non-quoted text

July 12, 2021
Page 20/71

Accessibility guidelines for HTML and CSS

5. Links and Buttons

5.1 Distinguish buttons from links

Limit the use of buttons to actions and links to navigation.

Buttons

Button elements <button /> / <input /> are for triggering an action.

They are to be used in cases such as submitting information, displaying the next or

previous image in a carousel, closing a modal dialogue box, etc.

Links

Links <a> are for navigation.

They are used to move to another page or to a specific area of the current page, by

means of an anchor system.

5.2 Complete non-explicit links and buttons using hidden text,

aria-label or title.

A link or button is non-explicit when the label alone does not suffice to describe its

destination or function.

• Link labels such as "Read More", "Learn More", "More Information", "Click

Here" are considered as non-explicit by nature.

• So is the "OK" button.

In these cases, the aria-label attribute or the title attribute must be used to

specify the destination of the link or the function of the button.

As an introduction to these two techniques, let us consider the example below of a

“Read more” link pointing to a page of the AcceDe Web project.

The aria-label attribute

A link or button can be made more explicit using the aria-label:

1. Add the aria-label attribute to the <a>, <button> or <input /> tag.

2. Populate this attribute by entering the exact label of the link or button

followed by the information to make the link or button explicit.

July 12, 2021
Page 21/71

Accessibility guidelines for HTML and CSS

 Read more

The title attribute

 Remarque

The title attribute is only partly supported by browsers and assistive technologies.

Although it is an accepted technique, it is preferable to use the aria-label

attribute.

A link or button can be made more explicit using the title attribute:

1. Add the title attribute to the <a>, <button> or <input /> tag.

2. Populate this attribute by entering the exact label of the link or button

followed by the information to make the link or button explicit.

 Read more

 Tip

Good practice is to populate these attributes by first entering the label then providing

the necessary information to make the link or button more explicit.

 Note

One of these two techniques must also be used to distinguish links or buttons whose

labels might be considered as explicit but which lead to different pages or trigger

different actions.

If there are two “Search” buttons on the same page, for example, they need to be

distinguished:

<input type="submit" value="Search" aria-label="Search a news"

/>

[…]

<input type="submit" value="Search" aria-label="Search a

person in the directory" />

July 12, 2021
Page 22/71

Accessibility guidelines for HTML and CSS

 Note

Note that a link can be considered as explicit though its context when the

surrounding elements can help understand its meaning.

5.3 Don't use the aria-label or title attributes on links and

buttons that are already explicit

A link or button is explicit when the label alone and/or the context suffice to describe

its destination or function.

For example:

• The link "AcceDe Web Project" is explicit by nature.

• So is a button labelled "Confirm Order".

The aria-label and title attributes (which can be used to make non-explicit

links accessible) must not be used for this type of link.

Here are some examples of incorrect use of the aria-label on an <input /> tag:

<input type="submit" value="Confirm Order" aria-label="" />

<input type="submit" value="Confirm Order" aria-label="Confirm

my Order" />

And here are some examples of incorrect use of the title attribute on an <a> tag:

AcceDe Web project

AcceDe Web project

https://www.numerique.gouv.fr/publications/rgaa-accessibilite/methode/glossaire/#contexte-du-lien
https://www.accede-web.com/en/guidelines/html-and-css-accessibility-guidelines/links-buttons/complete-non-explicit-links-and-buttons-using-hidden-text-aria-label-or-title/
https://www.accede-web.com/en/guidelines/html-and-css-accessibility-guidelines/links-buttons/complete-non-explicit-links-and-buttons-using-hidden-text-aria-label-or-title/

July 12, 2021
Page 23/71

Accessibility guidelines for HTML and CSS

6. Images and Icons

6.1 Managing the alt attribute of the and <input

type="image" /> tags

5 different cases:

• Decorative/ambient .

• “Simple” informative .

• “Complex” informative .

• Unabeled links or buttons.

• <input type="image" />.

Decorative/ambient

When a decorative or ambient tag is included in the HTML code, the alt

attribute must remain empty (without any space between the quotation marks of

alt="").

In the example of HTML code below, the tag simply enhances the title

"Error messages" (which is explicit by nature):

<h2>

 Error messages

</h2>

“Simple” informative

A “simple” informative image is one that can be described by concise alternative text.

When a simple informative tag is used in the HTML code, populate its alt

attribute with the information conveyed by the image.

In the example of HTML code below, the tag refers to a walking time and

distance:

July 12, 2021
Page 24/71

Accessibility guidelines for HTML and CSS

<p>

 2 min

 111 m

</p>

 Warning

Do not start alternative text with alt="Image of […]".

This information is already provided by the assistive technology when it reads the

 tag.

“Complex” informative

A “complex” informative image is one that requires a detailed description.

When a complex informative tag is included in the HTML code:

1. Populate its alt attribute with information to make the image explicit.

2. Propose a detailed description of the image directly below it.

3. Lastly, indicate in the alt attribute where the detailed description can be

found.

In this example, a show/hide button displays a detailed description

of the complex image.

https://www.accede-web.com/en/guidelines/rich-interface-components/show-hide-panels/

July 12, 2021
Page 25/71

Accessibility guidelines for HTML and CSS

In the following example of HTML code, the tag indicates both the function

of the image and where to find its detailed description:

<h2>Project Manager calendar</h2>

<img src="female-reproductive-system.png" alt="Project manager

calendar (detailed description below)" />

<button aria-expanded="true">Calendar text transcript</button>

<div>

 2016: Public concertation

 […]

</div>

 Warning

Do not start alternative text with alt="Image of […]".

This information is already provided by the assistive technology when it reads the

 tag.

Unlabeled links or buttons

When an tag acting as link or button is included alone (without a label) in

the HTML code, add the information needed to make it explicit into the alt attribute.

In the HTML code example below, the tag points to the home page:

 Warning

Do not start the alt text with alt="Link to […]" or alt="Button […]" when

the tag acts like a link or button.

This information is already provided to assistive technology by the <a> or <button>

tag.

July 12, 2021
Page 26/71

Accessibility guidelines for HTML and CSS

<input type="image" />

When <input type="image" /> is included in the HTML code, add the

information needed to make the button explicit into its alt attribute.

In the HTML code example below, the <input type="image" … /> tag launches

a search within the website:

<input type="image" src="magnifier.png" alt="Search site" … />

 Warning

Do not start the alt attribute with alt="Button […]" when the <input

type="image" … /> tag is acting as a link or button.

This information is already provided to the assistive technology by the <input

type="image" … /> tag.

6.2 Managing alternative text on SVG (Scalable Vector Graphics)

4 cases:

• Decorative/ ambient <svg>.

• “Simple” informative <svg>.

• “Complex” informative <svg>.

• Unlabeled <svg> links or buttons.

 Warning

In Internet Explorer, <svg> tags receive keyboard focus by default.

To optimize keyboard navigation in that browser, the focusable=”false”

attribute must be added to each <svg> tag used to display an image.

Decorative/ambient <svg>

When an <svg> is simply decorative or ambient, add aria-hidden="true".

July 12, 2021
Page 27/71

Accessibility guidelines for HTML and CSS

In the following HTML code, the <svg> simply enhances the label "Error Messages"

(explicit by nature):

<h2>

 <svg aria-hidden="true" focusable="false">[...]</svg>

 Error Messages

</h2>

 Warning

A purely decorative or ambient <svg> tag must not have any title, aria-label,

aria-labelledby and/or aria-describedby attributes.

Likewise, it must not have a <title> and/or <desc> elements.

“Simple” informative <svg>

A “simple” informative <svg> is an informative image that can be described by

concise alternative text.

When an informative <svg> image is included in the HTML code:

1. Add a role="img" attribute to the <svg> tag.

2. Add an aria-label attribute to the <svg> tag and populate the attribute

with information to make the image explicit.

In the example of HTML code below, the <svg> indicates that the text applies to a

walking time and distance:

<p>

 <svg role="img" aria-label="By walking: " focusable="false">

 [...]

 </svg>

 2 min

 111 m

</p>

 Warning

Do not start the <svg> alternative text with "Image […]".

July 12, 2021
Page 28/71

Accessibility guidelines for HTML and CSS

“Complex” informative <svg>

A “complex” informative <svg> is an informative image that requires a detailed

description.

When a “complex” informative <svg> is added to the HTML code:

1. Add a role="img" attribute to the <svg> tag.

2. Add an aria-label attribute to the <svg> tag and populate this attribute

with information to make the image explicit.

3. Propose a detailed description for the image directly below it.

4. Finally, indicate in the aria-label attribute where this detailed description

can be found.

In this example, a show/hide button displays a detailed description

of the complex image.

In the example of HTML code below, <svg> indicates the function of the image and

where to find its detailed description:

<h2>Project Manager calendar</h2>

<svg role="img" aria-label="Projet Manager calendar (detailed

description below)" focusable="false">

 [...]

</svg>

<button aria-expanded="true">Calendar text transcript</button>

<div>

https://www.accede-web.com/en/guidelines/rich-interface-components/show-hide-panels/

July 12, 2021
Page 29/71

Accessibility guidelines for HTML and CSS

 2016: Public concertation

 […]

</div>

 Warning

Do not start the <svg> alternative text with "Image […]".

<svg> links and buttons alone

When an <svg> image alone (without a label), acting as a link or a button, is included

in the HTML code:

1. Add a role="img" attribute to the <svg> tag.

2. Add an aria-label attribute to the <svg> tag and populate this attribute

with information to make the link or button explicit.

In the following example of HTML code, the <svg> points to the homepage of a

website:

 <svg role="img" aria-label="Homepage" focusable="false">

 [...]

 </svg>

 Warning

Do not start the <svg> alternative text of a link or a button with “Link to […]” or

“Button to […]”.

July 12, 2021
Page 30/71

Accessibility guidelines for HTML and CSS

6.3 Managing alternative text on Icon Fonts

 Note

Whether the icon is decorative, informative, or acts as a link/button, the container tag

should be given aria-hidden="true" to ensure that screen readers do not

present this information to the user as they encounter it.

If possible, the tag serving the icon should be a because it has no semantic

value.

3 cases:

• Decorative/ambient icons.

• Informative icons.

• Link or button icons.

Decorative/ambient icons

When a decorative or ambient icon is included in the HTML code there is no need for

an alternative.

In the following HTML code, the icon is simply a visual embellishment of the text

"Error messages" (which is explicit by nature):

<h2>

 Error messages

</h2>

Informative icons

When an informative icon is included in the HTML code:

1. Add a tag (e.g.) immediately after the tag which contains the icon.

2. Add information to this tag to make the icon explicit.

3. Hide the content of the tag with CSS by placing it off-screen (outside the

viewport) using the CSS "position: absolute;" property.

July 12, 2021
Page 31/71

Accessibility guidelines for HTML and CSS

In the example of HTML code below, the icon refers to the time and distance to reach

a destination by walking:

<p>

 By walking:

 2 min

 111 m

</p>

.off-screen {

 position: absolute;

 left: -99999rem;

}

Links or buttons icons

When an unlabelled icon acting as a link or button is added to the HTML code:

1. Add a tag inside the <a> or <button> tag.

2. Add text to the tag to make the link or button explicit.

3. Hide the content of the tag with CSS by placing it off-screen (outside the

viewport) using the CSS "position: absolute;" property.

In the example of HTML code below, the icon is a link that points to the homepage:

 Home

.off-screen {

 position: absolute;

 left: -99999rem;

}

July 12, 2021
Page 32/71

Accessibility guidelines for HTML and CSS

6.4 Tag images that have captions with <figure

role="figure"> and <figcaption>

Images that have captions must be tagged with <figure role="figure"> and

<figcaption>.

The <figure role="figure"> tag must:

• Include the image and the legend, and the legend must be tagged with

<figcaption>.

• Have an aria-label attribute that must have the same content as the

<figcaption> tag.

 Note

Ideally, the alternative text for the image (i.e. alt attribute for the tag)

must contain a reference to the adjacent caption.

Example 1

Bolivian desert, picture by Audesou.

<figure role="figure" aria-label="Desert in Bolivia, photo by

Audesou.">

 <figcaption>

 Desert in Bolivia, photo by Audesou.

 </figcaption>

</figure>

July 12, 2021
Page 33/71

Accessibility guidelines for HTML and CSS

Example 2

Photo 1: shot by Audesou in Bolivia.

<figure role="figure" aria-label="Photo 1 : shot by Audesou in

Bolivia.">

 <figcaption>

 Photo 1: shot by Audesou in Bolivia.

 </figcaption>

</figure>

July 12, 2021
Page 34/71

Accessibility guidelines for HTML and CSS

7. Forms

7.1 Use the <label> tag with the for and id attributes to label

form fields with a visible name

To label fields with a visible name:

1. Use the <label> tag for each form name.

2. Add the for attribute to each <label> tag and an id attribute on each form

field.

3. Populate the for and id attributes of each name/field pair with the same,

unique value.

<label for="name">Your last name</label>

<input type="text" id="name" name="name" autocomplete="family-

name" />

<label for="country">Your country</label>

<select id="country" name="country" autocomplete="country-

name">

 <option value="belgium">Belgium</option>

 <option value="france">France</option>

 […]

</select>

 Note

It is important to provide identical names for fields that have the same function.

For example, if there are several identification forms on the website, do not use "ID"

on one, and "Login" on the other.

7.2 Use the title attribute to label form fields that don't have a

visible label

To label form fields that don't have a visible label:

1. Add title to the field.

2. Populate the attribute by specifying the field’s function.

<input type="search" title="Your search" name="search" />

<input type="submit" value="Search" />

https://www.accede-web.com/en/guidelines/graphic-functional/additional-rules-for-compliance/use-identical-labels-for-form-fields-that-have-the-same-purpose/

July 12, 2021
Page 35/71

Accessibility guidelines for HTML and CSS

<select title="Filter news" name="filter">

 <option>By Date</option>

 <option>By Topic</option>

 […]

</select>

 Warning

The placeholder attribute cannot be used as a label because it disappears during

text entry.

It should only be used for secondary text entry aids that are not essential for

understanding the field.

<input type="text" title="Your search" placeholder="Enter

keywords" />

7.3 Use the autocomplete attribute to facilitate auto-fill

To facilitate auto-fill on fields referring to personal information:

1. Add an autocomplete attribute to the field.

2. Populate the autocomplete attribute according to the type of information

expected.

<label for="first-name">Your first_name</label>

<input type="text" id="first-name" name="first-name"

autocomplete="given-name" />

 Note

The possible values for the autocomplete attribute are standardized.

7.4 Add help text directly to the <label> tags

Help text must be included directly in the <label> tags.

This particularly applies to:

• Indications such as “Required field”.

• Instructions on how to format the input such as MM/DD/YYYY.

• Information about the type and maximum size of files than can be sent.

• Etc.

https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/autocomplete#values
https://www.accede-web.com/en/guidelines/html-css/forms/add-required-or-aria-requiredtrue-to-mandatory-fields/

July 12, 2021
Page 36/71

Accessibility guidelines for HTML and CSS

<label for="date">

 Date of Birth

 (MM/DD/YYYY)

</label>

<input type="date" id="date" name="date" autocomplete="bday"

/>

<label for="number">

 Your client number

 <input type="text" id="number" name="number" aria-

required="true" />

 i.e., BT-VZ

</label>

 Note

In some cases, because of a specific design layout for example, the help text cannot

be included in the <label>.

In these cases:

1. Add the id attribute to the tag containing the help text.

2. Populate the id with a unique value.

3. Add the aria-describedby attribute to the corresponding field.

4. Populate aria-describedby with the id value included in the help text.

<label for="document">

 Add a document to your case

</label>

<input type="file" id="document" name="document" aria

describedby="formats" />

<h2> Documents currently in your case</h2>

 CV

 Cover Letter

<p id="formats">Accepted formats: pdf or doc.</p>

Note that the aria-describedby attribute can reference several id values.

July 12, 2021
Page 37/71

Accessibility guidelines for HTML and CSS

 Warning

The placeholder attribute must not be used for entry aids that are essential for

understanding the type of data to be entered.

It must be used only for secondary entry aids.

<input type="search" title="Your search" placeholder="Enter

keywords" />

7.5 Add required or aria-required="true" to mandatory

fields

Required fields must have a required or aria-required="true" attribute.

 Note

In addition to this attribute, a distinctive sign must be included in the <label> tag.

<label for="email">Your email *</label>

<input type="email" id="email" name="email"

autocomplete="email" required />

<input type="checkbox" id="conditions" aria-required="true" />

<label for="conditions">I accept the conditions of sale

(required)</label>

7.6 Add error messages and correction suggestions directly to the

<label> tag

When error messages and suggested corrections are placed next to the relevant form

fields, they need to be added directly into the <label> tags.

 Tip

In addition to the error message, good practice is to add aria-invalid="true" to

the field.

https://www.accede-web.com/en/guidelines/graphic-functional/forms/provide-explicit-error-messages-and-suggestions-for-correcting-errors/

July 12, 2021
Page 38/71

Accessibility guidelines for HTML and CSS

<label for="name">

 Your name *

 Please fill in your name

</label>

<input type="text" id="name" name="name" autocomplete="family-

name" aria-required="true" aria-invalid="true" />

<label for="email">

 Your email *

 <input type="email" id="email" name="email"

autocomplete="email" aria-required="true" aria-invalid="true"

/>

 Please provide a valid email format

(example@domain.com)

</label>

 Note

In some cases, because of a specific design layout for example, the error message

cannot be directly included in the <label> tag.

In that case:

1. Add an id attribute to the element that contains the error message.

2. Give this id a unique value.

3. Add aria-describedby to the corresponding input field.

4. Add the id value of the error message to this aria-describedby attribute.

<label for="document">

 Add a document to your file

</label>

<input type="file" id="document" name="document" aria-

invalid="true" aria

describedby="formats error" />

<h2>Documents currently in your file</h2>

 CV

 Cover letter

<p id="error">File format incorrect.</p>

<p id="formats">Valid formats: pdf or doc.</p>

Note that aria-describedby can reference several id values.

July 12, 2021
Page 39/71

Accessibility guidelines for HTML and CSS

7.7 Group and label related fields with <fieldset> and <legend>

When a form has multiple fields and some of them have the same label, use

<fieldset> and <legend> to group them.

<fieldset>

 <legend>Participant 1</legend>

 <label for="firstName-1">First Name</label>

 <input type="text" id="firstName-1" name="firstName-1" />

 <label for="lastName-1">Last Name</label>

 <input type="text" id="lastName-1" name="lastName-1" />

 […]

</fieldset>

<fieldset>

 <legend>Participant 2</legend>

 <label for="firstName-2">First Name</label>

 <input type="text" id="firstName-2" name="firstName-2" />

 <label for="lastName-2">Last Name</label>

 <input type="text" id="lastName-2" name="lastName-2" />

 […]

</fieldset>

 Warning

The <fieldset> and <legend> tags must systematically be used when several

groups of fields have identical labels.

For example:

• A series of different questions on the same page which can all be answered “yes”

or “no”.

• A list of participants at an event, featuring the First Names and Last Names of each

participant.

If the form is too long, but none of the field groups have the same label, use the tags

<h1> to <h6> to sort the fields groups.

 Note

The use of <fieldset> and <legend> tags is particularly necessary when

integrating radio button or checkbox lists.

For example:

<fieldset>

 <legend>Sports played</legend>

file:///C:/en/guidelines/html-css/general-structure/create-a-logical-and-thorough-hierarchy-for-headings-using-h1-to-h6-tags/
file:///C:/en/guidelines/html-css/general-structure/create-a-logical-and-thorough-hierarchy-for-headings-using-h1-to-h6-tags/

July 12, 2021
Page 40/71

Accessibility guidelines for HTML and CSS

 <input type="checkbox" id="basketball" />

 <label for="basketball">Basketball</label>

 <input type="checkbox" id="tennis" />

 <label for="tennis">Tennis</label>

 […]

</fieldset>

July 12, 2021
Page 41/71

Accessibility guidelines for HTML and CSS

8. Lists

8.1 Tag unordered lists with and

Use the and tags to mark up lists of items which can appear in any order

(menus, tabs, sharing buttons, site map, etc.).

If required, make sure that lists are properly nested:

 First item of first level

 Second item of first level

 First item of second level

 Second item of second level

 Third item of first level

What are the advantages?

Structuring lists is essential for people using a screen reader (blind or visually

impaired). When they come across a structured list, they are able to:

• Navigate from list to list within a page.

• Know from the start the number of elements in the list.

• Navigate more easily through the list:

o Go directly to the end of the list if they are not interested in the

content.

o Easily return to the top of the list.

8.2 Tag ordered lists with and

Use the and tags to mark up lists of items that must appear in a specific

order (list of steps in a procedure, ranking, etc.). In other words, when the information

would not be understood if the items were presented in a different order.

If required, make sure that lists are properly nested:

 First item of first level

 Second item of first level

July 12, 2021
Page 42/71

Accessibility guidelines for HTML and CSS

 First item of second level

 Second item of second level

 Third item of first level

What are the advantages?

Structuring lists is essential for people using a screen reader (blind or visually

impaired). When they come across a structured list, they are able to:

• Navigate from list to list within a page.

• Know from the start the number of elements in the list.

• Navigate more easily through the list:

o Go directly to the end of the list if they are not interested in the

content.

o Easily return to the top of the list.

8.3 Mark up description lists with <dl>, <dt> and <dd>

Use <dl>, <dt> and <dd> tags to mark up description lists.

A description list is a series of key/value pairs that might be found, for example, in a

product description, or in a glossary of terms.

 Note

One keyword (<dt> tag) might have several values (<dd> tags).

Example with the description of an event:

<h2>Web Accessibility Conference</h2>

<dl>

 <dt>Location</dt>

 <dd>Paris</dd>

 <dt>Dates</dt>

 <dd>Saturday, September 7</dd>

 <dd>Wednesday, October 14</dd>

 <dt>Time</dt>

 <dd>Starts at 10 a.m.</dd>

</dl>

July 12, 2021
Page 43/71

Accessibility guidelines for HTML and CSS

Example with a glossary:

<dl>

 <dt><dfn>ARIA</dfn></dt>

 <dd>Accessible Rich Internet Application</dd>

 […]

 <dt><dfn>WCAG</dfn></dt>

 <dd>Web Content Accessibility Guidelines</dd>

 […]

</dl>

What are the advantages?

Structuring lists is essential for people using a screen reader (blind or visually

impaired). When they come across a structured list, they are able to:

• Navigate from list to list within a page.

• Know from the start the number of elements in the list.

• Navigate more easily through the list:

o Go directly to the end of the list if they are not interested in the

content.

o Easily return to the top of the list.

July 12, 2021
Page 44/71

Accessibility guidelines for HTML and CSS

9. Tables

9.1 Use <caption> to tag data table captions

When a data table is introduced by a caption, it must be tagged using the

<caption> tag.

 Note

The caption must be precise and concise.

<table>

 <caption>Average monthly temperatures of the 3 largest

cities in Canada.</caption>

 […]

</table>

9.2 Mark up the row and column header cells with <th>

In all data tables, mark up each column and row header cell with the <th> tag.

When a cell is essential to understand the data provided in the table, it must be

marked up with <th>.

<table>

 <caption>Average monthly temperatures of the 3 largest

cities in Canada.</caption>

 <tr>

 <td> </td>

 <th>Toronto</th>

 <th>Montreal</th>

 <th>Vancouver</th>

 </tr>

 <tr>

 <th>June</th>

 <td>22°C</td>

 <td>28°C</td>

 <td>26°C</td>

 </tr>

 <tr>

 <th>July</th>

 <td>24°C</td>

 <td>30°C</td>

 <td>28°C</td>

 </tr>

</table>

July 12, 2021
Page 45/71

Accessibility guidelines for HTML and CSS

Average monthly temperatures of the 3 largest cities in Canada.

Toronto Montreal Vancouver

June 22°C 28°C 26°C

July 24°C 30°C 28°C

9.3 In simple data tables use the scope attribute to associate data

cells with their corresponding headers

A data table is simple when each header cell applies to all the cells in the row or

column.

To associate headers with their corresponding data in this type of table, add the

scope attribute to the <th> tags. The value of the attribute depends on whether the

header cell concerns:

• An entire column: scope="col".

• An entire row: scope="row".

<table>

 <caption>Average monthly temperatures of the 3 largest

cities in Canada.</caption>

 <tr>

 <td> </td>

 <th scope="col">Toronto</th>

 <th scope="col">Montreal</th>

 <th scope="col">Vancouver</th>

 </tr>

 <tr>

 <th scope="row">June</th>

 <td>22°C</td>

 <td>28°C</td>

 <td>26°C</td>

 </tr>

 <tr>

 <th scope="row">July</th>

 <td>24°C</td>

 <td>30°C</td>

 <td>28°C</td>

 </tr>

</table>

July 12, 2021
Page 46/71

Accessibility guidelines for HTML and CSS

Average monthly temperatures of the 3 largest cities in France.

Paris Marseille Lyon

June 22°C 28°C 26°C

July 24°C 30°C 28°C

9.4 Add role="presentation" to each layout <table>

Mark up layout tables by including role="presentation" in the <table> tag.

<table role="presentation">[…]</table>

July 12, 2021
Page 47/71

Accessibility guidelines for HTML and CSS

10. Using CSS

10.1 Use CSS to lay out text

Texts must not be integrated as images but as texts in HTML format stylized with CSS.

Example of a specific font added in text format

10.2 Ensure that content can be read when images are turned off

When images are turned off, the page content must remain visible and readable. No

information must be lost and there must be sufficient contrast between the

foreground and background.

In other words, all the content must be visible and readable:

• Even when CSS images are turned off for the page.

• Even when HTML images are replaced with their alt attributes.

 Note

Whenever text is placed over a background image, make sure to provide an

alternative background color that will ensure text readability in the absence of the

background image.

background: black url(../images/dark-background.png) repeat-x;

This replacement color can be inherited from a parent.

 Warning

Special attention must be paid to the readability of alternative text for images

embedded in the HTML code when images are turned off.

https://www.accede-web.com/en/guidelines/graphic-functional/colours/make-sure-that-there-is-sufficient-contrast-between-the-content-and-the-background/
https://www.accede-web.com/en/guidelines/graphic-functional/colours/make-sure-that-there-is-sufficient-contrast-between-the-content-and-the-background/

July 12, 2021
Page 48/71

Accessibility guidelines for HTML and CSS

10.3 Ensure that content is understandable when CSS is disabled

Ensure that the information remains available and understandable even when CSS is

disabled, especially when colors, sizes, shapes or positions are information carriers.

Also, make sure not to generate informative content using only CSS.

Examples

Position of the current selection in the menu (Example 1)

In this example, "Programs" has bold text and a red border indicating it is currently

selected.

In the solution presented below, a tag is added to ensure that the

information is not lost without CSS.

 Programs

July 12, 2021
Page 49/71

Accessibility guidelines for HTML and CSS

Position of the current selection in the menu (Example 2)

In this example, a different colored arrow and an additional border indicate that the

link "Values" is the current page.

In this case, an efficient way of conveying that it is the current page without using

CSS is to remove the surrounding <a> tag.

 2015 key figures

 Governance

 <li aria-current="page">Values

 Subsidiaries

 SPIE around the world

 Innovation

 History

July 12, 2021
Page 50/71

Accessibility guidelines for HTML and CSS

CSS Generated Content (Example 3)

When informative content is necessary to understand the content, it must not be

generated by CSS.

a[href*=".pdf"]::after {

 content: ' (PDF)';

}

In this example, information about the PDF format of the downloadable files is added

with CSS. This is incorrect.

label.required::after {

 content: ' *';

}

input[aria-required=true]::before {

 content: '* ';

}

In these examples, the asterisk flagging up the mandatory fields of a form is added

using CSS, which is also incorrect.

July 12, 2021
Page 51/71

Accessibility guidelines for HTML and CSS

11. Zoom and font sizes

11.1 Use only relative font sizes (rem, em, %, etc.)

To set the font size, use only relative units in CSS font-size such as rem, em, % or

keywords (x-small, small, etc.).

Do not use absolute units such as pt, cm, etc.

 Warning

Although the pixel (px) can be used to define font size, it can prevent font size

increase in some cases.

We strongly advise against using it.

 Note

This recommendation does not apply to CSS print (media type print).

11.2 Ensure content readability even when font size is doubled

Guarantee content readability even when font is twice the default size.

Across the entire font size increase range, content and functionalities must not

overlap or disappear.

To ensure this rule is respected:

• Use only relative units (rem, em, %, etc.) to manage spaces (CSS properties

margin and padding).

• Do not use units (px, pt, em, %, etc.) with the CSS line-height property.

• Do not define a fixed height (CSS height property) on elements likely to

contain text, particularly form fields.

• Be careful when using absolute positioning (CSS declaration: position:

absolute;). Although this type of positioning is compatible with accessibility,

it can cause content overlap in some cases.

July 12, 2021
Page 52/71

Accessibility guidelines for HTML and CSS

12. Keyboard Navigation

12.1 Ensure the proper functioning of the interface using either the

mouse or keyboard

All interactions must be possible using either the mouse or the keyboard.

In other words, whenever the mouse can be used to interact with a component, the

same must also be true for the keyboard.

This is the case for example when displaying/hiding:

• A sub-menu.

• A modal window.

• A customized tooltip.

 Warning

Whether keyboard navigation is forwards or backwards, the page must not contain

any keyboard traps.

I.e. the keyboard focus must never:

• Remain blocked on an element without any way out.

• Loop in zone on the page without any way out.

 Note

Make sure that mouse and keyboard interactions also work on touch screens (and

vice versa).

12.2 Ensure that the tab order follows the logical reading order

The tab order must logically follow the visual order of the page.

In other words, if an interactive element follows another interactive element in the

visual presentation of the page, the focus must also move from the first to the second

element in the same order.

 Warning

Do not use positive values (value above 0) on the tabindex attribute because it can

disrupt the natural tab order of the page.

July 12, 2021
Page 53/71

Accessibility guidelines for HTML and CSS

 Note

In some rich interface components such as tabbed interfaces, the arrow keys rather

than the Tab key are used to navigate from one interactive element to another.

12.3 Ensure that keyboard focus is visible

In order to ensure that users navigating using the keyboard know where they are on

the page, each interactive element (links, buttons, form fields, etc.) must stand out

visually when it receives focus.

 Note

Ensure that this focus indicator has sufficient contrast.

 Tip

Good accessibility practice is to systematically back up each:hover rule with a

:focus rule in CSS.

For example:

main a:hover,

main a:focus {

 text-decoration: none;

}

12.4 Introduce “skip links”

A "Skip to content" must be placed on each page to help keyboard users navigate the

page.

This should be the first interactive element in the HTML code.

This internal link will take the user directly to the main content.

<body>

Skip to content

[…]

<main role="main">

 […]

</main>

[…]

</body>

July 12, 2021
Page 54/71

Accessibility guidelines for HTML and CSS

 Note

The link may be hidden by default. However, it must become visible when it receives

keyboard focus.

Therefore, the "skip to content" link should never be hidden using CSS properties

display: none; and/or visibility: hidden; which would make it completely

unusable with keyboard navigation.

A better approach would be to use the code below:

a.skiplink {

 display: inline-block;

 color: #555;

 background: #fff;

 padding: .5em;

 position: absolute;

 left: -99999rem;

 z-index: 100;

}

a.skiplink:focus {

 left: 0;

}

 Tip

In some situations, it takes a lot of tabbing to reach the main and secondary menus

and/or search engine from the top of the page.

In these cases, add "Skip to" links, as in the following example:

<ul id="skiplink">

 Skip to content

 Skip to navigation

 Skip to search

July 12, 2021
Page 55/71

Accessibility guidelines for HTML and CSS

13. Iframes

13.1 Populate the title attribute on each <iframe

Whenever an <iframe> tag is included in the page, it is also necessary to add a

title attribute.

The attribute value must introduce the content of the <iframe> tag clearly and

concisely.

For example, in the case of an <iframe> loading a video player on the page:

<iframe src="https://www.youtube.com/embed/y525BrxyvhA"

title="Vidéo YouTube : L'accessibilité numérique à toutes les

étapes d'un projet">

 […]

</iframe>

July 12, 2021
Page 56/71

Accessibility guidelines for HTML and CSS

14. Additional Guidelines

Some guidelines found in accessibility reference documents were not included in this

manual as they are considered as rarely applicable.

It is however necessary to respect these additional rules to ensure compliance with

RGAA 4 and WCAG 2.1.

They are listed below:

• Make sure the information is understandable, even without color

• Ensure content readability even when text spacing properties are customized

• Incorporate the summary of each complex data table in the <caption> tag

• Provide alternative text for each informative <canvas>, <embed> and

<object> tag

• Provide alternative text for each <canvas>, <embed> and <object> tag

used as a link or button.

• Hide each decorative or ambient <canvas>, <embed> and <object> tag on

assistive technologies

• Do not initiate an action while the trigger is in the "pressed" state

• Anticipate the interface behavior

• Group related options in <select> boxes with <optgroup>

• Add the title attribute to describe each <frame>

• Use the dir attribute to indicate a change in reading direction.

Tag block quotations using <blockquote>

Whenever, a block quotation is to be included in the HTML page, enclose it in a

<blockquote> tag.

 Note

Any isolated quote that is not directly incorporated in the surrounding text flow, is

considered as a block quotation.

Tag online quotations using <q>

Whenever a quotation is integrated in a text, enclose it in the <q> tag.

July 12, 2021
Page 57/71

Accessibility guidelines for HTML and CSS

Write the HTML code in a logical reading order

The writing order of the tags in the flow of the HTML code must follow the reading

order of the page.

In other words, when one tag precedes another in the visual flow of the page, it must

also immediately precede that element in the HTML code.

 Tip

To test this rule, turn off the CSS and check that the resulting page order matches the

page when CSS is active.

 Warning

If some content is hidden by default, make sure that it is properly positioned in the

HTML flow when styles are disabled.

Indicate in the alternative text for visual CAPTCHA where to find the

non-visual version

Whenever a visual CAPTCHA is used, indicate in the alternative text the information

needed to:

• Identify it as a security system.

• Find the non-visual version of the CAPTCHA.

It is often an audio version, so in this case opt for:

<img src="captcha.png" alt="Spam protection system: If you

can’t use it, use the audio version available below." />

 Note

To correctly enter the alternative text in compliance with the CAPTCHA integration

technique, refer to sheets on the topic Images and icons.

July 12, 2021
Page 58/71

Accessibility guidelines for HTML and CSS

Do not use tags or attributes specific to data tables in layout table

A layout table must not have any tags or attributes specific to data tables.

This means that:

• The tags <caption>, <colgroup>, <tfoot>, <th> and <thead> must not

be used in layout tables.

• The attributes axis, headers and scope must not be used in layout tables.

Plan alternative text for each type of multimedia content (<video>,

<audio>, <object>, <embed>, etc.)

Plan alternative text for each type of multimedia content embedded in the page

using the tags <video>, <audio>, <object>, <embed>, for example.

This alternative text will provide the same level of information to people who cannot

access the multimedia content (no plugin, old browser, etc.).

It can take the form of HTML content for example.

 Tip

When a video is displayed on a page, its transcription can be considered as an

alternative.

In this example, the calendar is a video carrying information, and a link

“The calendar in text format” leads to alternative text in HTML format.

July 12, 2021
Page 59/71

Accessibility guidelines for HTML and CSS

Populate the alt attribute of each mapped image and its <area />

tags

When a mapped image is integrated in the HTML code:

• An attribute must be added to the tag and to each <area /> tag.

• The alt attribute of the tag must announce the function of the

mapped image.

• The alt attribute of each <area /> tag must express the destination of the

link.

For example, in the case of a map of France where each department is clickable and

leads to an information sheet about the department:

<map name="map-France">

 <area shape="poly" coords="…" href="…" alt="Ain" />

 <area shape="poly" coords="…" href="…" alt="Aisne" />

 <area shape="poly" coords="…" href="…" alt="Allier" />

 […]

</map>

In complex tables, use the headers and id attributes to associate

header cells with their corresponding data cells

A data table is complex when the header cells do not apply to all the cells in the row

or column.

To associate headers with their corresponding data cells in this type of table, add the

id attribute to all <th> cells and the headers attribute to all the <td> cells.

The next step is to populate the headers attributes with the values found in the

corresponding header cells. If several headers are associated with a data cell, they are

separated by a space (space delimited) in the corresponding headers attribute.

<table>

 <caption>Sales revenue comparison of Davis and Davison

companies in the UK and in the rest of the world.</caption>

 <tr>

 <th id="header-1">In millions of pounds sterling</th>

 <th id="header-2">In the UK</th>

 <th id="header-3">Rest of the World</th>

 </tr>

 <tr>

 <th id="header-4">Davis</th>

 <td headers="header-4 header-2 header-1">

 50.7

 </td>

July 12, 2021
Page 60/71

Accessibility guidelines for HTML and CSS

 <td headers="header-4 header-3 header-1">

 139.3

 </td>

 </tr>

 <tr>

 <th id="header-5">Davison</th>

 <td headers="header-5 header-2 header-1">

 27.1

 </td>

 <td headers="header-5 header-3 header-1">

 476.0

 </td>

 </tr>

</table>

Comparison of sales revenue between the companies Dupond and Dupont

in France and the rest of the world.

In millions of

euros
In France Rest of the World

Dupond 50.7 139.3

Dupont 27.1 476.0

 Warning

The headers attribute must not be used in combination with the scope attribute.

 Note

Good practice is to organize the id values of the header cells according to the logical

visual order of the table.

A screen reader (using voice or braille) will announce the headers in this order.

Ensure that the HTML flow is consistent from one page to the next

The order of the main content blocks in the HTML flow must remain consistent from

one page to the next.

For example, if the secondary menu is placed after the main content, it is important

to keep this order on all pages of the website.

July 12, 2021
Page 61/71

Accessibility guidelines for HTML and CSS

Make sure layout tables follow the right reading order

When a screen reader (voice or braille) translates a layout table, the content is read in

a linear way i.e. cell by cell, from left to right, row after row.

So the reading order should remain consistent on each layout table.

For instance, if the source code below is used, the reading order will be:

1. First name.

2. Last name.

3. Age.

4. “First name” field.

5. “Last name” field.

6. “Age” field.

<table role="presentation">

 <tr>

 <td><label for="first-name">First name</label></td>

 <td><label for="last-name">Last name</label></td>

 <td><label for="age">Age</label></td>

 </tr>

 <tr>

 <td><input type="text" name="first-name" id="first-name"

/></td>

 <td><input type="text" name="last-name" id="last-name"

/></td>

 <td><input type="text" name="age" id="age" /></td>

 </tr>

</table>

To follow a coherent reading order while keeping the layout table, try this instead:

<table role="presentation">

 <tr>

 <td>

 <label for="first-name">First name</label>

 <input type="text" name="first-name" id="first-name" />

 </td>

 <td>

 <label for="last-name">Last name</label>

 <input type="text" name="last-name" id="last-name" />

July 12, 2021
Page 62/71

Accessibility guidelines for HTML and CSS

 </td>

 <td>

 <label for="age">Age</label>

 <input type="text" name="age" id="age" />

 </td>

 </tr>

</table>

 Warning

To ensure optimal screen reader compatibility and guarantee that the right reading

order is followed, it is strongly recommended to limit the use of nested layout tables

July 12, 2021
Page 63/71

Accessibility guidelines for HTML and CSS

Additional recommendations

In addition to the mandatory rules detailed in the previous chapters of this manual,

taking into account the additional recommendations below is beneficial for people

with disabilities.

We therefore strongly recommend that you apply them.

Tag abbreviations with <abbr>

Combine adjacent links pointing to the same page

When several links pointing to the same page are grouped together, they should be

combined in a single tag <a>.

Here is an example of coding for an image, a title, a date and an introduction serving

as a link to the details of a news item that we do not recommend:

 <img src="people-in-the-snow.jpg" alt=" Winter weather just

getting started across Canada" />

<h2>Winter weather just getting started across

Canada</h2>

<p class="date">

 12/12/2016

</p>

<p class="intro">

 Winter has arrived in Canada and won’t be

leaving anytime soon. Southern Ontario is expected to see its

first big snowfall of the year while British Columbia

continues to see snow and falling temperatures.

</p>

July 12, 2021
Page 64/71

Accessibility guidelines for HTML and CSS

And here is a more accessible coding:

 <h2>Winter weather just getting started across Canada</h2>

 <p class="date">12/12/2016</p>

 <p class="intro">Winter has arrived in Canada and won’t be

leaving anytime soon. Southern Ontario is expected to see its

first big snowfall of the year while British Columbia

continues to see snow and falling temperatures.</p>

 Note

This recommendation also applies to <button> tags.

Here is an example of coding of a grouped icon and text serving as an Add bookmark

button that we do not recommend:

<button>

</button>

<button>Add to favorites</button>

And here is a more accessible coding:

<button>

 Add to favorites

</button>

In forms with multiple steps, identify the current step using aria-
current="step"

In the navigation menu of a form with multiple steps, the current step should be

identified by means of aria-current="step".

<nav aria-label="Steps of your order">

 Personal information

 <li aria-current="step">Payment

 Preview

</nav>

July 12, 2021
Page 65/71

Accessibility guidelines for HTML and CSS

 Note

When forms have multiple steps, it should also be possible for the user to return to a

previous step by means of a link, for example.

Identify the current position in navigation systems with aria-
current

In all navigation systems (menus, breadcrumb trails, pagination systems, etc.), the

current position is to be identified by aria-current="page".

Likewise, any parent sections and sub-sections are to be identified by aria-

current="true", only in menus (and not in breadcrumb trails) by.

Example in a menu

In the example below of code for a navigation menu, the parent section “Upcoming

events” is identified by aria-current="true" included in the <a> tag and the

current page “Education” is identified by aria-current="page" included in the

 tag.

<nav role="navigation" aria-label="Main menu">

 Home

 Upcoming events

 Culture

 <li aria-current="page">Education

 Sports

 News

 Contact

</nav>

https://www.accede-web.com/en/guidelines/design/forms/returning-previous-steps-multiple-steps-forms/
https://www.accede-web.com/en/guidelines/design/forms/returning-previous-steps-multiple-steps-forms/

July 12, 2021
Page 66/71

Accessibility guidelines for HTML and CSS

Example in a pagination system

In the code example below for a pagination system, the current page “2” is identified

by aria-current="page" included in the tag.

<nav aria-label="Pagination">

 […]

 1

 <li aria-current="page">2

 3

 […]

</nav>

Example in a breadcrumb trail

In the example below of code for a breadcrumb trail, the current page “Editorial

manual” is identified by aria-current="page" included in the tag.

<nav aria-labelledby="intro-pagination">

 <p id="intro-pagination">You are here:</p>

 Home

 AcceDe Web guidelines

 <li aria-current="page">Editorial manual

</nav>

Add file format and size to all Download links and buttons

Whenever a link or button points to a download file, the following information should

be added to the label:

• Document name.

• Document format.

• Document size.

Download the map of Toronto bus routes (PDF - 2 MB)

July 12, 2021
Page 67/71

Accessibility guidelines for HTML and CSS

 Note

If an icon is used to indicate the file format, refer to “Images and Icons“, to implement

it in an accessible way.

 Tip

In situations where the size of the downloadable file cannot be known in advance (i.e.

generation on the fly), good accessibility practice is to give an approximate or

maximum size.

For example:

Download your March invoice (PDF – Approx. 1.5MB)

Update the page <title> when an error or confirmation message is

displayed

 Whenever a form returns an error or confirmation message, it is advisable to update

the <title>.

In the case of a confirmation message:

<title>Confirmation - Contact | [site name]</title>

If there is an error:

<title>Error - Contact | [site name]</title>

 Tip

It is also recommended to have this information appear first in the <title> tag.

July 12, 2021
Page 68/71

Accessibility guidelines for HTML and CSS

 Note

In some situations, the title does not need to be updated because the title displayed

after submission is already obvious.

For example

• A login form which goes directly to a profile page.

• A button which says “Next step” as part of a multi page form.

• A contact page that sends a preview page.

Do not disable the zoom with the user-scalable property

It is important to be able to zoom in or out of a page. For this purpose, the following

declarations must not be used:

<meta content="width=device-width;initial-scale=1.0; maximum-

scale=1.0; user-scalable=1;" name="viewport" />

<meta name="viewport" content="user-scalable=no" />

Do not use CSS to display images that carry information

CSS should not be used to display images that carry information.

In other words, images with information should be hard-coded in the HTML (i.e. via

the or svg tag).

 Note

Image sprites (images loaded in the background via CSS) are not appropriate for

images that carry information.

July 12, 2021
Page 69/71

Accessibility guidelines for HTML and CSS

 Tip

Images are considered as information carriers if some of the page content or

functions were missing without them. These images include:

• Logos.

• Text images.

• Images used as links or buttons.

• Etc.

 Warning

In particular, we strongly advise against the technique of placing text off-screen and

replacing it with a background image.

When the images are not uploaded, the information may be lost.

 [My logo text]

 #logo {

 display: block;

 width: 300px;

 height: 100px;

 text‐indent: ‐99999rem;
 background: url('images/logo.png');

 }

Pure HTML should be used instead.

Logically organize the items of dropdown lists

When dropdown lists are used, the options listed should be organized logically.

The logical order depends on the context. Examples include:

• Alphabetical order (e.g. a list of languages).

• Numbered order (e.g. a list of French departments).

• Practical order ("France" first in form to sign up for a French government

agency).

July 12, 2021
Page 70/71

Accessibility guidelines for HTML and CSS

 Tip

Another good accessibility practice is to avoid prefixing the content of the <option>

tag with decorative characters (dashes, stars, spaces, etc.).

This will give the user direct access to a desired value or group of values by simply

pressing a key on the keyboard (pressing the "S" key to reach the country "Spain", for

example).

 <select>

 <option>--Belgium</option>

 <option>--France</option>

 <option>--Germany</option>

 <option>--Italy</option>

 <option>--Spain</option>

 </select>

Should be replaced by:

 <select>

 <option>Belgium</option>

 <option>France</option>

 <option>Germany</option>

 <option>Italy</option>

 <option>Spain</option>

 </select>

Send a notification when a new window is opened

When a link or button opens a new window in the browser, it is advisable to add

information such as “new tab”.

Either in the aria-label attribute:

<a href="gtc.html" target="_blank" aria-label="General Terms

and Conditions (new tab)">

 General Terms and Conditions

Or in the alternative text of an icon/image as follows:

• Icon Fonts.

• Of an svg (vector graphic).

• Of a tag .

https://www.accede-web.com/en/guidelines/html-css/images-and-icons/managing-alternative-text-on-icon-fonts/#ancre-02
https://www.accede-web.com/en/guidelines/html-css/images-and-icons/managing-alternative-text-on-svg-scalable-vector-graphics/#ancre-02
https://www.accede-web.com/en/guidelines/html-css/images-and-icons/managing-the-alt-attribute-of-the-img-and-input-typeimage-tags/#ancre-02

July 12, 2021
Page 71/71

Accessibility guidelines for HTML and CSS

 Note

Use of the title attribute also complies with accessibility requirements:

<a href="gtc.html" target="_blank" title="General Terms and

Conditions (new tab)">

 General Terms and Conditions

Use only relative sizes (rem, em, %, etc.) for media query breakpoints

To define media query breakpoints, it is advisable to use relative units only (such as

rem, em or %) for the CSS @media rule

@media (max-width: 25rem) {

 nav li.tile {

 width: 33%;

 }

}

rather than absolute units such as px, pt, cm, etc.

 Note

This recommendation also applies for media queries directly integrated in the

<link /> tag:

<link rel="stylesheet" href="/css/extra-small.css" media="all

and (max-width: 25rem)" />

Make sure that hidden content is translated

For websites in multiple languages or when using scripts developed in a foreign

language, make sure to translate into the website’s current language all the hidden

content in:

• alt attributes of images.

• aria-label attributes.

• title attributes.

• Tags for content not visible on screen.

(via a CSS class “.sr-only”, for example)

	Accessibility guidelines for HTML and CSS
	Table of contents
	Introduction
	Context and objectives
	Who should read this document, and how to use it?
	Contact
	License agreement

	1. General structure
	1.1 Add structure to the header area using <header role="banner">
	1.2 Mark up the search field with role="search"
	1.3 Structure the main content area with <main role="main">
	1.4 Structure information about the website with <footer role="contentinfo">
	1.5 Structure primary and secondary navigation menus with <nav role="navigation">
	1.6 Structure navigation menus with lists
	Why should I structure lists?

	1.7 Create a logical and thorough hierarchy for headings, using <h1> to <h6> tags
	Example 1 (correct)
	Example 2 (correct)
	Example 3 (incorrect)

	2. Page title
	2.1 Provide a descriptive <title> element on each page

	3. Languages
	3.1 Provide the primary language of the page with the lang attribute on the <html> tag
	3.2 Use the lang attribute to indicate a change of language

	4. HTML Grammar and Semantics
	4.1 Write a valid HTML code following the formal grammar rules of the DOCTYPE used
	4.2 Use HTML elements for their semantic purpose

	5. Links and Buttons
	5.1 Distinguish buttons from links
	Buttons
	Links

	5.2 Complete non-explicit links and buttons using hidden text, aria-label or title.
	The aria-label attribute
	The title attribute

	5.3 Don't use the aria-label or title attributes on links and buttons that are already explicit

	6. Images and Icons
	6.1 Managing the alt attribute of the and <input type="image" /> tags
	6.1 Managing the alt attribute of the and <input type="image" /> tags
	Decorative/ambient
	“Simple” informative
	“Complex” informative
	Unlabeled links or buttons
	<input type="image" />

	6.2 Managing alternative text on SVG (Scalable Vector Graphics)
	Decorative/ambient <svg>
	“Simple” informative <svg>
	“Complex” informative <svg>
	<svg> links and buttons alone

	6.3 Managing alternative text on Icon Fonts
	Decorative/ambient icons
	Informative icons
	Links or buttons icons

	6.4 Tag images that have captions with <figure role="figure"> and <figcaption>
	6.4 Tag images that have captions with <figure role="figure"> and <figcaption>
	Example 1
	Example 2

	7. Forms
	7.1 Use the <label> tag with the for and id attributes to label form fields with a visible name
	7.2 Use the title attribute to label form fields that don't have a visible label
	7.3 Use the autocomplete attribute to facilitate auto-fill
	7.4 Add help text directly to the <label> tags
	7.5 Add required or aria-required="true" to mandatory fields
	7.6 Add error messages and correction suggestions directly to the <label> tag
	7.7 Group and label related fields with <fieldset> and <legend>

	8. Lists
	8.1 Tag unordered lists with and
	What are the advantages?

	8.2 Tag ordered lists with and
	What are the advantages?

	8.3 Mark up description lists with <dl>, <dt> and <dd>
	What are the advantages?

	9. Tables
	9.1 Use <caption> to tag data table captions
	9.2 Mark up the row and column header cells with <th>
	9.3 In simple data tables use the scope attribute to associate data cells with their corresponding headers
	9.4 Add role="presentation" to each layout <table>

	10. Using CSS
	10.1 Use CSS to lay out text
	10.2 Ensure that content can be read when images are turned off
	10.3 Ensure that content is understandable when CSS is disabled
	Examples
	Position of the current selection in the menu (Example 1)
	Position of the current selection in the menu (Example 2)
	CSS Generated Content (Example 3)

	11. Zoom and font sizes
	11.1 Use only relative font sizes (rem, em, %, etc.)
	11.2 Ensure content readability even when font size is doubled

	12. Keyboard Navigation
	12.1 Ensure the proper functioning of the interface using either the mouse or keyboard
	12.2 Ensure that the tab order follows the logical reading order
	12.3 Ensure that keyboard focus is visible
	12.4 Introduce “skip links”

	13. Iframes
	13.1 Populate the title attribute on each <iframe

	14. Additional Guidelines
	Tag block quotations using <blockquote>
	Tag online quotations using <q>
	Write the HTML code in a logical reading order
	Indicate in the alternative text for visual CAPTCHA where to find the non-visual version
	Do not use tags or attributes specific to data tables in layout table
	Plan alternative text for each type of multimedia content (<video>, <audio>, <object>, <embed>, etc.)
	Populate the alt attribute of each mapped image and its <area /> tags
	In complex tables, use the headers and id attributes to associate header cells with their corresponding data cells
	Ensure that the HTML flow is consistent from one page to the next
	Make sure layout tables follow the right reading order

	Additional recommendations
	Tag abbreviations with <abbr>
	Combine adjacent links pointing to the same page
	In forms with multiple steps, identify the current step using aria-current="step"
	In forms with multiple steps, identify the current step using aria-current="step"
	Identify the current position in navigation systems with aria-current
	Identify the current position in navigation systems with aria-current
	Example in a menu
	Example in a pagination system
	Example in a breadcrumb trail

	Add file format and size to all Download links and buttons
	Update the page <title> when an error or confirmation message is displayed
	Do not disable the zoom with the user-scalable property
	Do not use CSS to display images that carry information
	Logically organize the items of dropdown lists
	Send a notification when a new window is opened
	Use only relative sizes (rem, em, %, etc.) for media query breakpoints
	Make sure that hidden content is translated

