

Main rich interface components

accessibility guidelines

Date Version Author Statut / Comments

August 3rd, 2018 3.0 Atalan

These guidelines follow ARIA 1.0 specifications. Please

refer to WAI-ARIA Authoring Practices 1.1 for the

latest version of ARIA.

Next release of these AcceDe Web guidelines: March

2019.

August 10, 2020 4.0-v1 Atalan Major updates to ensure compliance with RGAA 4.

June 15, 2023 4.0-v2 Atalan Improved document accessibility.

October 24, 2023 4.1.2-v1 Atalan Guidelines adjustments according to APG.

April 18, 2024 4.1.2-v2 Atalan Guidelines adjustments according to APG.

August 20, 2024 4.1.2-v3 Atalan Content update.

https://www.w3.org/TR/2014/REC-wai-aria-20140320/
https://www.w3.org/TR/wai-aria-practices/

Table of contents

INTRODUCTION .. 3

Context and objectives ... 3

Who should read this document, and how to use it? ... 3

Contact ... 3

License agreement ... 4

RICH APPLICATIONS COMPONENTS.. 5

Accordions .. 5

Modal window ... 8

Alert dialog .. 11

“Show more” buttons .. 15

Radio buttons customized using ARIA .. 17

Radio buttons customized using CSS .. 21

Carousels .. 23

Checkboxes customized using ARIA .. 29

Checkboxes customized using CSS .. 32

Customized tooltips ... 34

Drop-down menu ... 36

Hamburger menu .. 38

Notification messages ... 41

Alert messages ... 42

Tab panels .. 43

Show / hide panels ... 47

Customized sliders .. 50

Customized spinbuttons ... 54

August 20, 2024
Page 3/56

Main rich interface components accessibility guidelines

Introduction

Context and objectives

This documentation provides guidelines to make common rich interface components

more accessible and to ensure WCAG 2.1 compliance.

This manual is part of a set of four complementary manuals that can be downloaded from

the AcceDe Web website:

• Graphic and functional accessibility guidelines.

• HTML and CSS accessibility guidelines (this manual).

• Main rich interface components accessibility guidelines.

• Accessibility guidelines for editors (template).

Who should read this document, and how to use it?

This document should be provided to stakeholders and/or contractors performing the

technical specifications or development of rich application components. It complements

project specifications. Its recommendations may be supplemented or removed

depending on the context of use, such work can be carried out by the project owner.

It is important that these recommendations be used in the process of selecting or

creating rich application components.

 Note

The online version of these guidelines comes with many examples, links to

complementary resources, etc. It is available at: www.accede-web.com.

Contact

Please send any comments about this document to Atalan, the coordinator of the AcceDe

Web project, at the following email address: accede@atalan.ca.

You can also find more information about the methodological instructions of the AcceDe

Web project on the website www.accede-web.com.

http://www.accede-web.com/
mailto:accede@atalan.ca
http://www.accede-web.com/

August 20, 2024
Page 4/56

Main rich interface components accessibility guidelines

License agreement

This document is subject to the terms of the Creative Commons BY 3.0 license.

You are free to:

• copy, distribute and communicate the work to the public,

• change this work,

under the following conditions:

• Mention of the authorship if the document is modified:

o You must include the Atalan and AcceDe Web logos and references,

indicate that the document has been modified, and add a link to the

original work at www.accede-web.com.

o You must not in any circumstances cite the name of the original author in a

way that suggests that he or she endorses you or supports your use of the

work without its express agreement.

o You must not in any circumstances cite the name of partner companies (Air

Liquide, Atos, BNP Paribas, Capgemini, EDF, Generali, L’Oréal, SFR, SNCF,

Société Générale, SPIE and Total), or the organizations which have

supported this initiative (AbilityNet, Agence Entreprises & Handicap,

AnySurfer, Association des Paralysés de France (APF), CIGREF, Design For All

Foundation, ESSEC, Handirect, Hanploi, Sciences Po and Télécom ParisTech)

without their express agreement.

The Atalan and AcceDe Web logos and trademarks are registered and are the exclusive

property of Atalan. The logos and trademarks of partner companies are the exclusive

property of Air Liquide, Atos, BNP Paribas, Capgemini, EDF, Generali, L’Oréal, SFR, SNCF,

Société Générale, SPIE and Total.

http://creativecommons.org/licenses/by/3.0/
https://www.accede-web.com/en/

August 20, 2024
Page 5/56

Main rich interface components accessibility guidelines

Rich applications components

Accordions

Principle

Accordions are dynamic components that optimize the display of content in a limited

space with expand/collapse mechanisms on a group of panels.

They are usually controlled by a button over each panel, which toggles its contents in and

out of view.

This code is based on the “Accordion” design pattern found in the ARIA Authoring

Practices Guide (APG) of the W3C.

Core HTML base

<h2>

 <button aria-expanded="false" aria-controls="accordion-panel-

1">Panel 1 header</button>

</h2>

<div id="accordion-panel-1">

 [Panel 1 content (hidden)]

</div>

<h2>

 <button aria-expanded="true" aria-controls="accordion-panel-

2">Panel 2 header</button>

</h2>

<div id="accordion-panel-2">

 [Panel 2 content (visible)]

</div>

<h2>

 <button aria-expanded="false" aria-controls="accordion-panel-

3">Panel 3 header</button>

</h2>

<div id="accordion-panel-3">

 [Panel 3 content (hidden)]

</div>

https://www.w3.org/WAI/ARIA/apg/patterns/accordion/examples/accordion/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/

August 20, 2024
Page 6/56

Main rich interface components accessibility guidelines

ARIA roles, states and properties

• Each panel header must be marked up with <button>.

• Each panel header tab must be surrounded by a header tag (<h1> to <h6>),

depending on the context in which the accordion is placed.

• The aria-expanded attribute must be added to each header tab. Its value will be

set dynamically based on the state of the accordion:

o aria-expanded="true" when the associated panel is open.

o aria-expanded="false" when the associated panel is closed.

• Each header tab must be attached to its panel by means of the aria-

controls attribute:

o Each panel must have an id attribute set to a unique value.

o Each panel header tab must have an aria-controls attribute set to the

value of the id attribute of the associated panel.

Keyboard interactions

Enter or Spacebar

• If the keyboard focus is on the header tab of a closed panel, one of these keys

opens the associated panel. If the accordion authorizes the expansion of only

one panel at the time, and if another panel is already open, it closes the panel.

• If the keyboard focus is on the header tab of an open panel, one of these keys

closes the associated panel if the accordion authorizes the collapse of that

panel. Some accordions only allow one panel to be expanded at any time. In

that case, the open panel cannot be closed by activating its associated heading

tab.

Note

In the HTML code example, heading level 2 (<h2>) is used to mark up the panel headers.

The heading level must be adapted to the context of the page: it is important to maintain

a logical heading hierarchy in the page.

For instance, if an <h2> heading introduces the accordion, then each panel header

becomes a child of this level 2 heading and must be marked up with <h3>.

https://www.accede-web.com/en/guidelines/html-css/general-structure/create-a-logical-and-thorough-hierarchy-for-headings-using-h1-to-h6-tags/

August 20, 2024
Page 7/56

Main rich interface components accessibility guidelines

Components

The components of the “Accordeons” are shown here because their level of accessibility is

considered good or very good.

However, before using them in your project, it is important to check that the

specifications presented above have been respected. Some components may require

some adjustments.

https://github.com/atalan/a11y-resources/blob/master/list-of-a11y-resources.md#accordion---accord%C3%A9on

August 20, 2024
Page 8/56

Main rich interface components accessibility guidelines

Modal window

Principle

A modal window appears inside the current window, and is displayed above the page that

calls it.

Modal windows take control of the current page as long as they are displayed on the

screen.

This sheet is based on the "Modal window" design pattern detailed in ARIA Authoring

Practices Guide (APG) of the W3C.

Core HTML base

The HTML base of a modal window differs, depending on whether or not it has a title

displayed on the screen.

Modal window with a title displayed on the screen

<div role="dialog" aria-modal="true" aria-labelledby="modal-

heading">

 <button>Close</button>

 <h1 id="modal-heading">[Modal heading]</h1>

 [Modal content]

</div>

https://www.w3.org/WAI/ARIA/apg/patterns/dialog-modal/examples/dialog/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/

August 20, 2024
Page 9/56

Main rich interface components accessibility guidelines

Modal window without a title displayed on the screen

<div role="dialog" aria-modal="true" aria-label="[Modal

heading]">

 <button>Close</button>

 [Modal content]

</div>

ARIA roles, states and properties

• role="dialog" must be applied to the container in the modal window

• aria-modal="true" must be applied to the container in the modal window

• If the title of the modal window is displayed on the screen, it must be attached

to the modal window via the attribute aria-labelledby:

o The title of the modal window must have an id attribute with a unique

value.

o The container of the modal window must have an aria-labelledby

attribute with the value of the id attribute of the modal window title.

• If the title of the modal window is not displayed on screen, aria-label must

be applied and provided on the modal window container.

Keyboard interactions

Tab

When the modal window is displayed, this key moves the keyboard focus successively

through the interactive elements in the modal window. If the focus is on the last

interactive element in the modal dialog box when the tab is pressed the keyboard focus

moves to the first interactive element in the modal window.

Shift + Tab

This key combination has the same behavior as the Tab key, but in the reverse order. If

the keyboard focus is on the first interactive element in the modal window when the key

combination is pressed, the focus moves to the last interactive element in the modal

window.

Esc

August 20, 2024
Page 10/56

Main rich interface components accessibility guidelines

When the modal window is displayed, the modal window closes and the keyboard focus

is placed on the interactive element that triggered the modal window.

Expected behavior

When the modal window is displayed (open)

• The keyboard focus is dynamically placed on the first interactive element

contained in the modal window.

• The keyboard focus must be confined to the modal window and tabulating

must not be possible on the rest of the page (below the modal window).

• The modal window can be closed with the Esc key.

When the modal window is hidden (closed)

• The keyboard focus must be repositioned on the element that opened the

modal window opening.

• Ideally, the modal window is removed from the DOM. However, if the modal

window remains present in the source code, display: none or

visibility: hidden must be applied to its container.

Components

These “Modal window” components are proposed here because their level of accessibility

is considered good or very good.

However, before using them in your project, it is important to check that the

specifications presented above have been respected. Certain components may need

some adjustments before they can be used in your project.

https://github.com/atalan/a11y-resources/blob/master/list-of-a11y-resources.md#modal--modale

August 20, 2024
Page 11/56

Main rich interface components accessibility guidelines

Alert dialog

Principle

A modal alert box is a subtype of a modal dialog window.

It sends a short alert or prompts confirmation from the user, and are appropriate when:

• The message is no longer than one phrase.

• Punctuation is not necessary to understand the message. For example, modal

alert boxes are not appropriate to state that a specific syntax, such as

"MM/DD/YYYY", is the expected format for a date field.

• The message does not contain information that the person will need later, such

as a phone number.

• The message does not contain interactive elements, such as a link to a

resource.

This code is based on the "Alert Dialog" design pattern found in the ARIA Authoring

Practices Guide (APG) of the W3C.

Core HTML

The HTML base of a modal alert window is different depending on whether or not there is

a title on the screen.

Alert dialog with a displayed title

<div role="alertdialog" aria-modal="true" aria-labelledby="modal-

heading" aria-describedby="modal-content">

https://www.accede-web.com/en/guidelines/rich-interface-components/modal-windows/
https://www.w3.org/WAI/ARIA/apg/patterns/alertdialog/examples/alertdialog/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/

August 20, 2024
Page 12/56

Main rich interface components accessibility guidelines

 <button>Close</button>

 <h1 id="modal-heading">[Modal window title]</h1>

 <p id="modal-content">[Modal window content]</p>

</div>

Alert dialog without a displayed title

<div role="alertdialog" aria-modal="true" aria-label="[Modal

window title]" aria-describedby="modal-content">

 <button>Close</button>

 <p id="modal-content">[Modal window content]</p>

 </div>

ARIA roles, states and properties

• role="alertdialog" must be applied to the container of the alert dialog.

• aria-modal="true" must be applied to the container of the alert dialog.

• If the title of the alert dialog is displayed it must be programmatically

associated to the alert dialog with the aria-labelledby attribute:

o The title of the alert dialog must contain an id attribute set to a unique

value.

o The container of the alert dialog must have an aria-labelledby

attribute set to the value of the id attribute of the alert dialog.

• If the title of the alert dialog is not displayed an aria-label attribute must be

applied and its value set to the container of alert dialog.

• The message must be programmatically associated with the alert dialog using

the aria-describedby attribute:

o The message must contain an id attribute set to a unique value.

o The container of the alert dialog must have an aria-describedby

attribute set to the value of the id of the message.

August 20, 2024
Page 13/56

Main rich interface components accessibility guidelines

Keyboard interactions

Tab

When the alert dialog is displayed, this key successively moves the keyboard focus

through each interactive element in the alert dialog. If the keyboard focus is on the last

interactive element in alert dialog when the key is pressed, the keyboard focus moves to

the first interactive element in the alert dialog.

Shift + Tab

This key combination has the same behavior as the Tab key, but in reverse order. If the

keyboard focus is on the first interactive element in the alert dialog when the key

combination is pressed, the keyboard focus moves to the last interactive element in the

modal box.

Esc

When the alert dialog is displayed, closes the alert dialog, and moves the keyboard focus

to the interactive element that triggered the alert dialog opening.

Expected behavior

When the alert dialog is displayed

• The keyboard focus is dynamically placed on the first interactive element in the

modal alert window.

• The keyboard focus must be confined to the modal alert window and

tabulating must not be possible on the rest of the page (below the modal alert

window).

• The modal alert window can be closed using the Esc key.

When the modal alert window is closed

• The keyboard focus must be repositioned on the element that triggered the

opening of the modal alert window.

• Ideally, the modal alert window is removed from the DOM. However, if the

modal alert window is still present in the source code, then display: none

or visibility: hidden must be applied to its container.

August 20, 2024
Page 14/56

Main rich interface components accessibility guidelines

Components

The "Modal Alert Window" components are shown here because their level of

accessibility is considered good or very good.

However, before using them in your project, it is important to check for compliancy with

the specifications presented above. Certain components may require some adjustments.

https://github.com/atalan/a11y-resources/blob/master/list-of-a11y-resources.md#modal--modale

August 20, 2024
Page 15/56

Main rich interface components accessibility guidelines

“Show more” buttons

Principle

"Show more" buttons are dynamic components that display additional content just

before the content, each time the button is activated. Content is added with each press,

as long as additional hidden content remains available.

The "Show more" button disappears when all the additional hidden content has been

displayed on the page.

Core HTML base

Before activation of the button

<div>[Default content]</div>

<button>["Show More" button label]</button>

After activation of the button

<div>[Default content shown before activation]</div>

<div tabindex="-1">[Additional information which is added using

the button]</div>

<button>["Show More" button label]</button>

ARIA roles, sates and properties

Following the activation of the button, tabindex="-1" must be added to the container

of the new content.

Keyboard interaction

Enter and Spacebar

When the keyboard focus is on the button, either of these keys will show additional

hidden information, as long as there is hidden information available.

August 20, 2024
Page 16/56

Main rich interface components accessibility guidelines

Expected behavior

• When the keyboard focus is on the button, additional information can be

shown by hitting the Spacebar and Enter keys . For this, listen to the click

event.

• When the button is activated, the keyboard focus is dynamically placed on the

container of the new additional information.

• When there is no more additional information to show, the button disappears.

Notes

If the button only adds interactive elements, the tabindex="-1" attribute can be

omitted and the focus can be simply positioned on the first interactive element which

appears after the button is activated.

This is the case with a "View more news" button, for example, that triggers links to news

items:

 News Story 1

 News Story 2

 News Story 3

<button>View more news stories</button>

When the button is activated, the keyboard focus is sent to the link "News Story 4" which

be the new link that appears.

There's no need for tabindex="-1" because the <a> element can receive the keyboard

focus by default.

 News Story 1

 News Story 2

 News Story 3

 News Story 4

 News Story 5

 News Story 6

August 20, 2024
Page 17/56

Main rich interface components accessibility guidelines

Radio buttons customized using ARIA

Principle

Radio buttons are form elements that are used to select a single option out of a group of

possible options.

Radio buttons are "customized" when they are not built using the standard HTML code

for radio buttons, found in the specification <input type="radio"/>.

By following the recommendations below the default behavior of standard HTML radio

buttons can be reproduced in situations where the standard HTML code for radio

buttons cannot be used.

This code is based on the "Radio Group" design pattern found in ARIA Authoring

Practices Guide (APG) of the W3C.

Core HTML base

<div role="radiogroup" aria-labelledby="question">

 <h2 id="question">Question</h2>

 <div role="radio" aria-checked="false" tabindex="-1">

 <img aria-hidden="true" src="radio.svg" alt="Not selected: "

/>

 Choice 1

 </div>

 <div role="radio" aria-checked="true" tabindex="0">

 <img aria-hidden="true" src="radio-checked.svg"

alt="Selected: " />

 Choice 2

 </div>

 <div role="radio" aria-checked="false" tabindex="-1">

 <img aria-hidden="true" src="radio.svg" alt="Not selected: "

/>

 Choice 3

 </div>

</div>

https://www.w3.org/WAI/ARIA/apg/patterns/radio/examples/radio/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/

August 20, 2024
Page 18/56

Main rich interface components accessibility guidelines

ARIA roles, states and properties

• role="radiogroup" must be placed on the radio button group.

• role="radio" must be placed on the container of each radio button.

• The tabindex attribute must be placed by default on the container of each

radio button, and its value set dynamically according to the state of the radio

buttons:

o If no button is selected: tabindex="0" on the first and last radio button of

the group and tabindex="-1" on the other radio buttons.

o If one radio button is selected: tabindex="0" on the selected button,

tabindex="-1" on the other radio buttons.

• aria-hidden="true" must be placed on each image simulating a radio

button.

• The aria-checked attribute must be placed on the container of each radio

button. Its value must be set dynamically according to the state of the

associated radio button:

o aria-checked="true" when the radio button is selected.

o aria-checked="false" when the radio button is not selected.

• The group of radio buttons must be attached to the label of the group using

the aria-labelledby attribute:

o The label of the group should have a unique id value.

o The radio button group should have an aria-labelledby attribute

marked up with the value of the id attribute of the group label.

Keyboard interaction

Keyboard interactions are the same as for standard radio buttons in HTML. The only

difference is that keyboard focus is placed on the container of the radio button and not

only on the radio button.

Tab and Shift + Tab

August 20, 2024
Page 19/56

Main rich interface components accessibility guidelines

When the user enters a group of radio buttons by pressing the Tab key, the focus moves

to the selected radio button in the group. When the focus is on a selected radio button,

the next tab allows the user to leave the group of radio buttons.

If no radio button is selected when the radio buttons group is opened from the keyboard,

the keyboard is focused:

• On the first radio button in the group if the Tab key was pressed.

• On the last radio button if the Shift + Tab key combination was pressed.

Up arrow and Left arrow

When the focus is on one of the radio buttons, each of these arrows moves the focus to

the previous radio button in the group and selects that radio button. If the focus is on the

first radio button of the group and one of these arrows is pressed, then the keyboard

focus moves to the last radio button in the group and selects it.

Down arrow and Right arrow

When the focus is on one of the radio buttons, each of these arrows moves the focus to

the next radio button in the group and selects that radio button. If the focus is on the last

radio button of the group and one of these arrows is pressed, then the keyboard focus

moves to the first radio button in the group and selects it.

Spacebar

When the keyboard focus is on a radio button, the spacebar selects that radio button and

deselects the other radio button which had previously been selected in the group.

Note

The image source and its alternative text must be modified to correspond to the state of

the associated button.

Note that the tag is provided in the example of code above, but it could be

replaced with a scalable vector image <svg>.

https://www.accede-web.com/en/guidelines/html-css/images-and-icons/managing-alternative-text-on-svg-scalable-vector-graphics/#ancre-02

August 20, 2024
Page 20/56

Main rich interface components accessibility guidelines

Components

The “Radio button components customized with ARIA” are shown here because their level

of accessibility is considered good or very good.

However, before using them in your project, it is important to check for compliancy with

the specifications presented above. Certain components may require some adjustments.

https://github.com/atalan/a11y-resources/blob/master/list-of-a11y-resources.md#radio-buttons--boutons-radio

August 20, 2024
Page 21/56

Main rich interface components accessibility guidelines

Radio buttons customized using CSS

Principle

Radio buttons are form elements that allow the user to select a single option out of a

group of possible options.

Radio buttons are "customized using CSS" when they are built using the standard HTML

code for radio buttons as found in the specification <input type="radio" /> but the

standard radio buttons are visually hidden and replaced with CSS images, icon fonts, or

specific styles.

There are several ways of achieving this. The example below shows how to simulate the

behaviour of standard default HTML radio buttons using CSS pseudo-elements and

background images, while ensuring that they remain accessible.

Core HTML base

<fieldset>

 <legend>Question</legend>

 <input type="radio" id="answer-1" name="question"

value="answer-1" />

 <label for="answer-1">Answer 1</label>

 <input type="radio" id="answer-2" name="question"

value="answer-2" />

 <label for="answer-2">Answer 2</label>

 […]

</fieldset>

CSS base

label {

 padding: 0 0 0 2rem;

 position: relative;

}

input[type=radio] {

 position: absolute;

 opacity: 0;

}

input[type=radio] + label::before,

input[type=radio] + label::after {

 content: '';

 position: absolute;

 border-radius: 50%;

August 20, 2024
Page 22/56

Main rich interface components accessibility guidelines

}

input[type=radio] + label::before {

 left: 0.5rem;

 top: 0.2rem;

 display: inline-block;

 width: 0.8rem;

 height: 0.8rem;

 border: 0.05rem solid black;

 background: white;

}

input[type=radio]:checked + label::after {

 left: 0.7rem;

 top: 0.4rem;

 border: 0.25rem solid black;

}

input[type=radio]:focus + label::before {

 outline: 0.05rem dotted;

}

August 20, 2024
Page 23/56

Main rich interface components accessibility guidelines

Carousels

Principle

Carousels are dynamic modules that make it possible to fit several images in a small area.

They are controlled by a navigation system of scrolling panels, which is sometimes

automatic.

They usually contain a visible slide with flanked by "Previous" and "Next" buttons, to

scroll through the various slides of the carousel. They are often associated with page

navigation buttons.

If the carousel is “auto-scrolling”, a “Pause” button is displayed to pause and resume

scrolling.

This auto-scrolling carousel has a pause/play button, arrows and bullets points for

navigation.

https://www.accede-web.com/en/guidelines/graphic-functional/rich-content-and-multimedia/provide-a-method-for-stopping-all-animated-content/
https://www.accede-web.com/en/guidelines/graphic-functional/rich-content-and-multimedia/provide-a-method-for-stopping-all-animated-content/

August 20, 2024
Page 24/56

Main rich interface components accessibility guidelines

This code is based on the "Carousel with Tabs for Slide Control" design pattern found in

ARIA Authoring Practices Guide (APG) of the W3C.

Core HTML base

<button><img src="pause.png" alt="Play slide carousel"

/></button>

<button></button>

<div aria-live="polite">

 <div role="tabpanel" id="slide-1" aria-roledescription="slide"

aria-label="1 of 4">

 [Content of the first panel (shown, because associated tab is

selected)]

 </div>

 <div role="tabpanel" id="slide-2" aria-roledescription="slide"

aria-label="2 of 4">

 [Content of the second panel (hidden)]

 </div>

 <div role="tabpanel" id="slide-3" aria-roledescription="slide"

aria-label="3 of 4">

 [Contenu of the third panel (hidden)]

 </div>

 <div role="tabpanel" id="slide-4" aria-roledescription="slide"

aria-label="4 of 4">

 [Content of the fourth panel (hidden)]

 </div>

</div>

<div role="tablist" aria-label="Slides">

 <button role="tab" aria-selected="true" aria-controls="slide-

1"></button>

 <button role="tab" tabindex="-1" aria-selected="false" aria-

controls="slide-2"><img src="bullet.png" alt="Slide 2"

/></button>

 <button role="tab" tabindex="-1" aria-selected="false" aria-

controls="slide-3"><img src="bullet.png" alt="Slide 3"

/></button>

 <button role="tab" tabindex="-1" aria-selected="false" aria-

controls="slide-4"><img src="bullet.png" alt="Slide 4"

/></button>

</div>

<button></button>

ARIA roles, states and properties

• role="tablist" and aria-label="Slides" must be placed on the

element which encapsulates the tabbed interface component.

https://www.w3.org/WAI/ARIA/apg/patterns/carousel/examples/carousel-2-tablist/
https://www.w3.org/WAI/ARIA/apg/

August 20, 2024
Page 25/56

Main rich interface components accessibility guidelines

• role="tab" must be placed on each tab.

• The tabindex="-1" attribute must be placed on each tab that are not

selected.

• The aria-selected attribute must be applied to each tab. Its value must be

set dynamically according to the state of the associated tab:

o aria-selected="true" on the selected tab.

o aria-selected="false" on the other tabs.

• The aria-live attribute must be applied to the slide container. Its value must

be dynamically set according to the scrolling state of the carousel:

o aria-live="polite" if the carousel does not scroll automatically.

o aria-live="off" if the carousel scrolls automatically.

• role="tabpanel", aria-roledescription="slide" and aria-

label="1 of 4" must be placed on each tab panel. The values of this last

attribute must be filled in dynamically, depending on the number and total

number of slides.

• Slides that are not displayed should be hidden using the CSS class display:

none; or visibility: hidden;. If this is not possible, apply the following

recommendations:

o The aria-hidden attribute must be applied to each slide. Its value must

be set dynamically according to the state of the associated slide:

▪ aria-hidden="false" on the displayed slide.

▪ aria-hidden="true" on the other slides.

o tabindex="-1" must be applied dynamically to each interactive element

in the hidden slide. This attribute must be removed from elements in the

slide which are displayed.

• Each tab must be programmatically associated with its corresponding slide by

the aria-controls attribute:

o Each slide must have an id attribute set to a unique value.

August 20, 2024
Page 26/56

Main rich interface components accessibility guidelines

o Each tab must have an aria-controls attribute set to the value of the id

for the associated slide.

Keyboard interaction

Tab

When the user tabs into the tabbed interface component, this key places the focus on the

selected tab in the group. When the focus is on a tab, pressing the Tab key allows the

user to leave the tabbed interface component.

Shift + Tab

This key combination has the same behavior as the Tab key, except in the reverse order.

Left arrow

When the focus is on a tab, this key moves the keyboard focus to the previous tab in the

slide show and selects this tab. If the keyboard focus is on the first tab in the group when

the key is pressed, the keyboard focus moves to the last tab in the group and selects it.

Right arrow

When the focus is on a tab, this key moves the keyboard focus to the next tab in the slide

show and selects this tab. If the keyboard focus is on the last tab in the group when the

key is pressed, the keyboard focus moves to the first tab in the group and selects it.

Home

Moves focus to the first tab and shows the first slide.

End

Moves focus to the last tab and shows the last slide.

Enter or Spacebar

When the keyboard focus is on the navigation buttons, either of these keys displays the

next or previous slide.

When the keyboard focus is on the pause button, either of these keys toggles between

pause and play.

August 20, 2024
Page 27/56

Main rich interface components accessibility guidelines

Expected behavior

• Among all the tabs, only one can be selected at a time and only the active tab

can receive the focus.

• When an inactive tab is selected, the previously selected tab becomes inactive

and the focus is on the newly selected tab.

• Only the slide(s) associated with the currently selected pagination tab are

displayed. Other slides are hidden with display: none; or visibility:

hidden; or optionally with aria-hidden="true".

• It is not possible to tab to any interactive element in the hidden slides. If the

hidden slides are not hidden thanks to CSS, the tabindex="-1" attribute

must be added dynamically to these elements. The attribute is then removed

when the associated slide is visible.

• The arrow keys are used to navigate the list of tabs and to select the current

tab.

• The value of the aria-selected attribute must be modified dynamically each

time the state of the associated tab is updated.

• The tabindex="-1" attribute must also be modified dynamically each time

the state of the tab is updated.

• If used, the value of the aria-hidden attribute must also be modified

dynamically each time the state of the associated slide is updated.

• The text alternative for the image button "Play slide carousel" must be updated

when the image button is active, for example, "Pause slide carousel".

Notes

• Note that it is also possible to replace in buttons with text, scalable

vector graphics <svg>, or icon fonts.

• In the case of a carousel containing no pagination bullets, all keyboard

interactions and expected behaviors specific to the tab system are to be

ignored. Thus, in the core HTML base, navigation bullets will be removed, and

the role="tabpanel" attribute present on slides will be replaced by

role="group".

https://www.accede-web.com/en/guidelines/html-css/images-and-icons/managing-alternative-text-on-svg-scalable-vector-graphics/#ancre-02
https://www.accede-web.com/en/guidelines/html-css/images-and-icons/managing-alternative-text-on-svg-scalable-vector-graphics/#ancre-02
https://www.accede-web.com/en/guidelines/html-css/images-and-icons/managing-alternative-text-on-icon-fonts/#ancre-03

August 20, 2024
Page 28/56

Main rich interface components accessibility guidelines

Components

The “Carousel” components are shown here because their level of accessibility is

considered good or very good.

However, before using them in your project, it is important to check for compliancy with

the specifications presented above. Certain components may require some adjustments.

https://github.com/atalan/a11y-resources/blob/master/list-of-a11y-resources.md#carousel--carrousel

August 20, 2024
Page 29/56

Main rich interface components accessibility guidelines

Checkboxes customized using ARIA

Principle

Checkboxes are form elements that are used to select a single option out of a group of

possible options.

Checkboxes are "customized using ARIA" when they are not built using the standard HTML

code for checkboxes as found in the specification: <input type="checkbox" />.

Below is a way of reproducing the behavior of a standard default HTML checkbox, when

standard HTML cannot be used.

This code is based on the "Checkbox" design pattern found in ARIA Authoring Practices

Guide (APG) of the W3C.

Core HTML base

<div aria-labelledby="question" role="group">

 <h2 id="question">Question</h2>

 <div role="checkbox" aria-checked="false" tabindex="0">

 <img aria-hidden="true" src="checkbox.svg" alt="Not

selected: " />

 Choice 1

 </div>

 <div role="checkbox" aria-checked="true" tabindex="0">

 <img aria-hidden="true" src="checkbox-checked.svg"

alt="Selected: " />

 Choice 2

 </div>

 <div role="checkbox" aria-checked="false" tabindex="0">

 <img aria-hidden="true" src="checkbox.svg" alt="Not

selected: " />

 Choice 3

 </div>

</div>

https://www.w3.org/WAI/ARIA/apg/patterns/checkbox/examples/checkbox/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/

August 20, 2024
Page 30/56

Main rich interface components accessibility guidelines

ARIA roles, states and properties

• role="group" must be added to the group of checkboxes.

• role="checkbox" and tabindex="0" must be added to the container of

each checkbox.

• aria-hidden="true" must be applied to all the images simulating a

checkbox.

• The aria-checked attribute must be applied to the content of each

checkbox. Its value must be set dynamically according to the state of the

associated checkbox:

o aria-checked="true" when the check box is checked.

o aria-checked="false" when the check box is not checked.

• The checkbox group must be programmatically associated with the group via

the aria-labelledby attribute:

o The tag for the group must have an id attribute set to a unique value.

o The checkbox group must have an aria-labelledby attribute set to the

value of the id attribute of the check box group.

Keyboard interaction

Keyboard interaction is the same as for classic HTML, except that the keyboard focus is

on the checkbox container, and not only on the checkbox itself.

Spacebar

When the keyboard focus is on the checkbox container, this key toggles between the

checked and unchecked states.

Tab

This key moves focus to each checkbox in the logical order before leaving the group.

Shift + Tab

This key combination has the same behavior as the Tab key, except in the reverse order.

August 20, 2024
Page 31/56

Main rich interface components accessibility guidelines

Note

The image source and its alternative text must be modified according to the state of the

associated checkbox.

Note that tags can also be replaced with scalable vector graphics <svg>, or

icon fonts.

Components

The “Checkboxes customized in ARIA” components are shown here because their level of

accessibility is considered good or very good.

However, before using them in your project, it is important to check for compliancy with

the specifications presented above. Certain components may require some adjustments.

https://www.accede-web.com/en/guidelines/html-css/images-and-icons/managing-alternative-text-on-svg-scalable-vector-graphics/#ancre-02
https://www.accede-web.com/en/guidelines/html-css/images-and-icons/managing-alternative-text-on-icon-fonts/#ancre-03
https://github.com/atalan/a11y-resources/blob/master/list-of-a11y-resources.md#checkbox--case-%C3%A0-cocher

August 20, 2024
Page 32/56

Main rich interface components accessibility guidelines

Checkboxes customized using CSS

Principle

Checkboxes are form elements that are used to select one or more options out of a

group of options.

Checkboxes are "customized using CSS" when they are built using the standard HTML

code for radio buttons as found in the specification <input type="checkbox" />

but the standard radio buttons are visually hidden and replaced with CSS images, icon

fonts, or specific styles.

There are several ways of achieving this. The example below shows how to simulate the

behavior of standard default HTML checkboxes using CSS pseudo-elements and

background images, while ensuring that they remain accessible.

Core HTML base

<fieldset>

 <legend>Question</legend>

 <input type="checkbox" id="answer-1" name="answer-1" />

 <label for="answer-1">Answer 1</label>

 <input type="checkbox" id="answer-2" name="answer-2" />

 <label for="answer-2">Answer 2</label>

 […]

</fieldset>

CSS base

label {

 position: relative;

 padding: 0 0 0 2rem;

}

input[type=checkbox] {

 position: absolute;

 opacity: 0;

}

input[type=checkbox] + label::before,

August 20, 2024
Page 33/56

Main rich interface components accessibility guidelines

input[type=checkbox] + label::after {

 content: '';

 position: absolute;

 display: inline-block;

}

input[type=checkbox] + label::before {

 left: 0.5rem;

 top: 0.15rem;

 width: 0.9rem;

 height: 0.9rem;

 border: 0.05rem solid black;

 background: white;

}

input[type=checkbox]:checked + label::after {

 left: 0.6rem;

 top: 0.28rem;

 height: 0.8rem;

 border-left: 0.8rem solid black;

}

input[type=checkbox]:focus + label::before {

 outline: 0.05rem dotted;

}

August 20, 2024
Page 34/56

Main rich interface components accessibility guidelines

Customized tooltips

Principle

Tooltips are messages that allow the user to obtain additional information about an item.

The message is displayed on hover and also when keyboard focus is on the element.

A tooltip is "customized using ARIA" when it is not built using the standard HTML code as

found in the specification, which is the title attribute.

This code is based on the "Tooltip" design pattern found in ARIA Authoring Practices

Guide (APG) of the W3C.

Core HTML base

[Link text]

<div role="tooltip" id="extrainfo" >[Content of the

tooltip]</div>

ARIA roles, states and properties

• tabindex="0" must be applied to the element which will cause the tooltip to

be displayed, if the tooltip is not reachable by default using the keyboard.

• role="tooltip" must be applied to the tooltip container.

• The element which triggers the tooltip must be programmatically associated

with the tooltip via the aria-describedby attribute:

o The container of the tooltip should have an id attribute set to a unique value.

o The element that triggers the tooltip should contain an aria-describedby

attribute set to the value of the id attribute of the container for the tooltip.

Keyboard interaction

Esc

When the tooltip is visible, this key hides the tooltip.

Expected behavior

• The tooltip must be displayed when the triggering element:

https://www.w3.org/WAI/ARIA/apg/patterns/tooltip/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/

August 20, 2024
Page 35/56

Main rich interface components accessibility guidelines

o Is hovered over by the mouse.

o Receives keyboard focus.

• The tooltip must be hidden when the triggering element:

o Is not hovered over.

o Does not have keyboard focus.

• Hitting the Esc key hides the tooltip.

• The tooltip must remain visible as long as the mouse is hovering over the

triggering element.

• When the tooltip is hidden, it must have display: none; and/or visibility:

hidden;. Or alternatively, it can be removed from the source code.

Note

The major advantage of a custom tooltip over its standard HTML counterpart (title

attribute) is that the custom tooltip is also accessible for keyboard users.

Components

Customized tooltip components are shown here because their level of accessibility is

considered good or very good.

However, before using them in your project, it is important to check for compliancy with

the specifications presented above. Certain components may require some adjustments.

https://github.com/atalan/a11y-resources/blob/master/list-of-a11y-resources.md#tooltip--infobulle

August 20, 2024
Page 36/56

Main rich interface components accessibility guidelines

Drop-down menu

Principle

A drop-down menu is usually a series of “buttons” displayed side by side. A sub-menu is

displayed below the activated button.

This code is based on the “Disclosure Navigation Menu” design pattern found in the ARIA

Authoring Practices Guide (APG) of the W3C.

Core HTML base

<nav role="navigation" aria-label="Main menu">

 <button aria-expanded="false">Who we are and what we

do</button>

 <ul class="non-visible">

 […]

 <button aria-expanded="true">Institutional

relations</button>

 <ul class="visible">

 Institutional relations

 Events

 […]

 International cooperation

 […]

</nav>

https://www.w3.org/WAI/ARIA/apg/patterns/disclosure/examples/disclosure-navigation/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/

August 20, 2024
Page 37/56

Main rich interface components accessibility guidelines

ARIA roles, states and properties

• The <nav role="navigation"> tag must be used to structure the menu.

• The aria-label attribute must be included in the same <nav

role="navigation"> tag and set with the name of the corresponding

menu.

• Nested and tags must be used to structure the first-level buttons

and sub-menu links.

• Each first-level button must be marked with a <button> tag.

• The aria-expanded attribute must be included in each first-level button. Its

value must be dynamically set according to the status of the associated sub-

menu:

o aria-expanded="false" when the associated sub-menu is collapsed.

o aria-expanded="true" when the associated sub-menu is expanded.

Keyboard interactions

Enter or Spacebar

• If the keyboard focus is positioned on a first-level button of a collapsed sub-

menu, expand the associated sub-menu.

• If the keyboard focus is positioned on a first-level button on an expanded sub-

menu, collapse the associated sub-menu.

Esc

If the keyboard focus is positioned on one of the items in a displayed sub-menu, this key

moves the keyboard focus to the first-level button that triggered the sub menu display,

and then closes the sub menu.

Note

The sub-menus that are not displayed must be hidden using display: none and/or

visibility: hidden.

August 20, 2024
Page 38/56

Main rich interface components accessibility guidelines

Hamburger menu

Core HTML base

<nav role="navigation" aria-label="Main menu">

 <button aria-expanded="true">

 <svg aria-hidden="true" focusable="false">[…]</svg>

 Menu

 </button>

 <ul class="visible">

 [Main navigation menu]

</nav>

ARIA roles, states and properties

• The <nav role="navigation"> tag must be used to structure the

hamburger button and menu.

• The aria-label attribute must be included in the same <nav

role="navigation"> tag and set with the name of the corresponding menu

(e.g. aria-label="Main menu").

• The hamburger button must be marked with a <button> tag.

• The aria-expanded attribute must be applied to the hamburger button that

controls the menu. Its value must be set dynamically according to the status of

the menu:

o aria-expanded="true" when the menu is expanded.

o aria-expanded="false" when the menu is collapsed.

August 20, 2024
Page 39/56

Main rich interface components accessibility guidelines

Keyboard interactions

Enter and Spacebar

When the keyboard focus is positioned on the hamburger button, these keys alternately

display/hide the menu.

Esc

If the keyboard focus is positioned on one of the menu items, Esc moves the keyboard

focus to the hamburger button that triggered the menu display, and then closes it.

Expected behavior

• When the keyboard focus is positioned on the hamburger button, the menu

can be displayed/hidden using the Spacebar and Enter keys. To do this, listen

to the click event.

• When the menu is collapsed, it must be hidden using display: none;

and/or visibility: hidden;.

• The default aria-expanded attribute value of the hamburger button must be

modified dynamically each time the menu status changes.

Note

If the hamburger button is not located immediately before the HTML menu, then it is

important to technically associate the menu with the hamburger button that controls it.

This association must be declared through the attribute aria-controls:

• The id attribute of the menu must have only one value.

• The hamburger button aria-controls attribute must have the same value as

the menu’s id attribute.

August 20, 2024
Page 40/56

Main rich interface components accessibility guidelines

<nav role="navigation" aria-label="Main menu">

 <button aria-expanded="true" aria-controls="main-menu">

 <svg aria-hidden="true" focusable="false">[…]</svg>

 Menu

 </button>

 […]

 <ul id="main-menu" class="visible">

 [Main navigation menu]

</nav>

Components

The "Hamburger menu" components are shown here because their level of accessibility is

considered good or very good.

However, before using them in your project, it is important to check for compliancy with

the specifications presented above. Certain components may require some adjustments.

https://github.com/atalan/a11y-resources/blob/master/list-of-a11y-resources.md#modal--modale

August 20, 2024
Page 41/56

Main rich interface components accessibility guidelines

Notification messages

Principle

Notification messages are dynamic components that announce non-critical information

or warnings.

They grab the reader’s attention through a short message that appears all at once on the

screen, without reloading the page or interrupting the activity.

Core HTML base

When the page is loaded

<div role="status"></div>

When the alert is triggered

<div role="status">

 <p>Your message has been sent.</p>

</div>

ARIA roles, states and properties

The role="status" attribute must be applied to the container of the notification message.

Expected behavior

The role="status" attribute must be statically present when the page is loaded.

The container must then be dynamically populated when the notification is triggered.

Note

Notification messages must not disappear automatically from the screen after a certain

time.

They must disappear only following a deliberate action by the user (closing "X”, display of

a new page, etc.).

August 20, 2024
Page 42/56

Main rich interface components accessibility guidelines

Alert messages

Principle

Alert messages are a special case of notification messages that are used to report a

critical error or warning.

They grab the reader’s attention through a short message that is displayed all at once on

the screen, without reloading the page or interrupting the activity.

This code is based on the "Alert" design pattern found in ARIA Authoring Practices Guide

(APG) of the W3C.

Core HTML base

When the page is loaded

<div role="alert"></div>

When the alert is triggered

<div role="alert">

 <p>Seating may not be available on this trip.</p>

</div>

ARIA roles, states and properties

The role="alert" attribute must be applied to the container of the alert message.

Expected behavior

The role="alert" attribute must be statically present when the page is loaded.

This container must then be dynamically populated when the alert is triggered.

Note

Alert messages must not disappear automatically from the screen after a certain time.

They must disappear only following a deliberate action by the user (closing "X”, display of

a new page, etc.).

https://www.accede-web.com/en/guidelines/rich-interface-components/notification-messages/
https://www.w3.org/WAI/ARIA/apg/patterns/alert/examples/alert/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/

August 20, 2024
Page 43/56

Main rich interface components accessibility guidelines

Tab panels

Principle

Tab panels are dynamic modules that optimize visible space on a web page, through a

system of elements which control whether panels are visible or hidden.

They usually appear as a list of items placed next to the selected tab, designed to display

content that relates to it. Only one tab can be activated at the time.

This code is based on the "Tabs with Automatic Activation" design pattern found in ARIA

Authoring Practices Guide (APG) of the W3C.

Core HTML base

<div role="tablist">

 <button role="tab" id="tab-1" tabindex="-1" aria-

selected="false" aria-controls="panel-1">Tab 1</button>

 <button role="tab" id="tab-2" aria-selected="true" aria-

controls="panel-2">Tab 2</button>

 <button role="tab" id="tab-3" tabindex="-1" aria-

selected="false" aria-controls="panel-3">Tab 3</button>

 <button role="tab" id="tab-4" tabindex="-1" aria-

selected="false" aria-controls="panel-4">Tab 4</button>

</div>

<div role="tabpanel" id="panel-1" aria-labelledby="tab-1"

tabindex="0">

 [Content of the first panel (hidden)]

</div>

https://www.w3.org/WAI/ARIA/apg/patterns/tabs/examples/tabs-automatic/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/

August 20, 2024
Page 44/56

Main rich interface components accessibility guidelines

<div role="tabpanel" id="panel-2" aria-labelledby="tab-2"

tabindex="0">

 [Content of the second panel (displayed, because the associated

tab is selected)]

</div>

<div role="tabpanel" id="panel-3" aria-labelledby="tab-3"

tabindex="0">

 [Content of the third panel (hidden)]

</div>

<div role="tabpanel" id="panel-4" aria-labelledby="tab-4"

tabindex="0">

 [Content of the fourth panel (hidden)]

</div>

ARIA roles, states and properties

• role="tablist" must be placed on the element which encapsulates the

tabbed interface component.

If the tabs are oriented vertically, the aria-orientation="vertical" attribute must

also be applied.

• role="tab" must be placed on each tab.

• role="tabpanel" must be placed on each tab panel.

• The tabindex="0" attribute must be applied to each panel.

• Each tab must be associated with its panel via the aria-controls attribute:

o Each panel should have an id attribute set to a unique value.

o Each tab should have the aria-controls attribute set to the value of the

id attribute of the associated panel.

• Each panel must be associated with the tab that controls it via the aria-

labelledby attribute:

o Each tab should have an id attribute set to a unique value.

o Each panel should have an aria-labelledby attribute set to the value of

the id attribute of the tab that controls it.

• The aria-selected attribute must be applied to each tab. Its value must be

set dynamically according to the state of the associated tab:

August 20, 2024
Page 45/56

Main rich interface components accessibility guidelines

o aria-selected="true" on the selected tab.

o aria-selected="false" on the other tabs, which have not been

selected.

• The tabindex="-1" attribute must be placed on each non-selected tab. It

must be set dynamically according to the state of the associated tab.

Keyboard interaction

Tab and Shift + Tab

When the user tabs into the tabbed interface component, the Tab key places the focus

on the selected tab in the group. When the focus is on a tab, pressing the Tab key leaves

the group of tabs and the focus is placed on the displayed panel.

Left arrow

When the focus is on a tab, this key moves the keyboard focus to the previous tab in the

group and selects this tab. If the keyboard focus is on the first tab in the group when the

key is pressed, the keyboard focus moves to the last tab in the group and selects it.

If the tabs are oriented vertically, the Up arrow must also have this behavior.

Right arrow

When the focus is on a tab, this key moves the keyboard focus to the next tab in the

tabbed interface component and selects this tab. If the keyboard focus is on the last tab

in the group, this key will move keyboard focus to the first tab in the group and selects it.

If the tabs are oriented vertically, the Down arrow must also have this behavior.

Note

Panels not displayed must be hidden with display: none and/or visibility:

hidden.

Components

The ”Tabs” components are shown here because their level of accessibility is considered

good or very good.

https://github.com/atalan/a11y-resources/blob/master/list-of-a11y-resources.md#tabs--onglets

August 20, 2024
Page 46/56

Main rich interface components accessibility guidelines

However, before using them in your project, it is important to check for compliancy with

the specifications presented above. Certain components may require some adjustments.

August 20, 2024
Page 47/56

Main rich interface components accessibility guidelines

Show / hide panels

Principle

Expand/collapse panels are dynamic components designed to optimize the display of

content in limited spaces by means of an “expand/collapse” system.

They can be controlled by the user, usually by activating a button at the top of the panel.

This code is based on the "Disclosure (Show/Hide)" design pattern found in ARIA

Authoring Practices Guide (APG) of the W3C.

Core HTML base

<button aria-expanded="true">[Label for the button]</button>

<div class="visible">

 <p>[Contents of expanded panel]</p>

</div>

ARIA roles, states and properties

The aria-expanded attribute must be added to the button which controls the panel. Its

value must be dynamically set based upon the status of the associated expanded panel:

• aria-expanded="true" when the associated panel is open.

• aria-expanded="false" when the associated panel is closed.

Keyboard interactions

Enter or Spacebar

When the keyboard focus is on the button, either of these keys will toggle the associated

panel open or closed.

https://www.w3.org/WAI/ARIA/apg/patterns/disclosure/examples/disclosure-image-description/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/

August 20, 2024
Page 48/56

Main rich interface components accessibility guidelines

Expected behavior

• When the keyboard focus is on the button, the panel can be opened or closed

using the Spacebar and Enter keys. For this, listen to the click event.

• When the panel is closed, it must be hidden with display: none; and/or

visibility: hidden;.

• The value of the aria-expanded attribute must be modified dynamically each

time the state of the associated panel is updated.

Note

In the particular case where the action button is not located immediately before the

HTML code of the associated expanded panel, it will be necessary to facilitate access to

this panel:

• On button activation, the focus is automatically moved into the associated

expanded panel:

o At the level of the first panel element, if it is interactive,

o otherwise, at the level of the panel container (adding the tabindex="-1"

attribute to make it focusable).

• When the focus is in the panel and comes out of it, it should be set:

o At the level of the button that enabled it to be opened, after tabbing back

following the first interactive element in the panel.

o At the next interactive element located immediately after the button that

opened it in the HTML code, after tabbing forward following the last

interactive element in the panel.

• When the panel is opened, the Escape shortcut should be used to close it,

repositioning the focus at the button.

• Associate the button with its panel via the aria-controls attribute:

o The expanded panel must have an id attribute filled in with a unique value.

o The button must have an aria-controls attribute populated with the

value of the associated expanded panel’s id attribute.

August 20, 2024
Page 49/56

Main rich interface components accessibility guidelines

<button aria-expanded="true" aria-controls="expandable-

panel">[Button name]</button>

[...]

<div id="expandable-panel" class="visible" tabindex="-1">

 <p>[Content of the expandable panel whose first element is not

interactive]</p>

</div>

Components

The “Expandable panel” components are shown here because their level of accessibility is

considered good or very good.

However, before using it in your project, it is important to check for compliancy with the

specifications presented above. Depending on the version used, the components may

need some adjustments before they can be used in your project.

https://github.com/atalan/a11y-resources/blob/master/list-of-a11y-resources.md#accordion---accord%C3%A9on

August 20, 2024
Page 50/56

Main rich interface components accessibility guidelines

Customized sliders

Principle

Sliders are form elements that allow the user to select a unique value, by moving a cursor

on a graduated scale.

Sliders that are "customized" are not built using the standard HTML code as found in the

specification <input type="range" />.

The following code shows how to reproduce the behavior of HTML sliders, if the native

sliders cannot be used.

This code is based on the "Slider" design pattern found in ARIA Authoring Practices Guide

(APG) of the W3C.

Core HTML base

<p id="label">Slider label</p>

<button role="slider" aria-valumin="0" aria-valuemax="10" aria-

valuenow="8" aria-labelledby="label">

</button>

[…]

ARIA roles, states and properties

• role="slider" must be placed on the slider.

• The aria-valuemin attribute must be added to the cursor. Its value must be

set to the minimum value allowed by the slider.

• The aria-valuemax attribute must be added to the cursor. Its value must be

set to the maximum value allowed by the slider.

• The aria-valuenow attribute must be added to the cursor. Its value must be

set dynamically to the current value of the cursor.

https://www.w3.org/WAI/ARIA/apg/patterns/slider/examples/slider-color-viewer/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/

August 20, 2024
Page 51/56

Main rich interface components accessibility guidelines

• The cursor must be programmatically associated with its label text using the

aria-labelledby attribute.

o The label of the slider must have an id set to a unique value.

o The cursor must have an aria-labelledby attribute set to the value of

the id of the slider.

• aria-hidden="true" must be applied to the image of the cursor.

Keyboard interaction

The keyboard interaction is the same as for standard HTML sliders. The only exception is

that the focus is set directly on the cursor and not on the whole slider.

Tab

When the user tabs into the slider, the focus is placed on the cursor, hitting the Tab key

again causes the focus to leave the slider.

Shift + Tab

This key combination provides the same behavior as the Tab key, but in the reverse

order.

Up arrow and Right arrow

When the keyboard focus is on the cursor, either of these keys moves the slider and

increases the value by one step.

Down arrow and Left arrow

When the keyboard focus is on the cursor, either of these keys moves the slider and

decreases the value by one step.

Home

When the keyboard focus is on the cursor, this key moves the cursor to its minimum.

End

When the keyboard focus is on the cursor, this key moves the cursor to its maximum.

August 20, 2024
Page 52/56

Main rich interface components accessibility guidelines

Page up

When the keyboard focus is on the cursor, this key moves the cursor and increases the

value by a predefined number of steps.

Page down

When the keyboard focus is on the cursor, this key moves the cursor and decreases the

value by a predefined number of steps.

Expected behavior

• When the keyboard focus is on the cursor, the focus will stay on the cursor until

the Tab key is pressed.

• When the keyboard focus is on the cursor, the slider value can be modified

using the following keys: Up arrow , Down arrow , Home , End , Page up

and Page down .

• The value of the aria-valuenow attribute must be modified dynamically to

update the slider and must be identical to the value of the slider.

• The value of the slider cannot be higher than the aria-valuemax value.

• The value of the slider cannot be lower than the aria-valuemin value.

Note

The choice of the number of steps to "jump" when pressing the Page up and

Page down keys is open.

On the other hand, it is important to note that digital information conveyed by the

aria-valuenow attribute is not always clear. This may be the case, for example, when a

slider is used to select one of the seven days of the week:

<p id="event-day">Day of the week</p>

<button role="slider" aria-valumin="0" aria-valuemax="6" aria-

valuenow="3" aria-labelledby="event-day">

</button>

[…]

August 20, 2024
Page 53/56

Main rich interface components accessibility guidelines

In these situations, the optional aria-valuetext element must be used in parallel to

the value, in order to translate the current value into something more understandable:

<p id="event-day">Day of the week</p>

<button role="slider" aria-valumin="0" aria-valuemax="6" aria-

valuenow="3" aria-valuetext="Thursday" aria-labelledby="event-

day">

</button>

[…]

If it is used, the value of the aria-valuetext attribute must be updated dynamically as

the cursor position changes.

Note that the tags found in the code above can be also replaced with scalable

vector graphics <svg>, or icon fonts.

Components

The “Customized sliders” components are shown here because their level of accessibility

is considered good or very good.

However, before using them in your project, it is important to check for compliancy with

the specifications presented above. Certain components may require some adjustments.

https://www.accede-web.com/en/guidelines/html-css/images-and-icons/managing-alternative-text-on-svg-scalable-vector-graphics/#ancre-01
https://www.accede-web.com/en/guidelines/html-css/images-and-icons/managing-alternative-text-on-svg-scalable-vector-graphics/#ancre-01
https://www.accede-web.com/en/guidelines/html-css/images-and-icons/managing-alternative-text-on-icon-fonts/#ancre-01
https://github.com/atalan/a11y-resources/blob/master/list-of-a11y-resources.md#slider

August 20, 2024
Page 54/56

Main rich interface components accessibility guidelines

Customized spinbuttons

Principle

Spinbuttons are form elements that allow the user to set a numeric value. They are

presented as a text field associated with two buttons used to increase or decrease the

value of the field by one increment.

Spinbuttons which are "customized" are not built using the standard HTML code as found

in the specification <input type="number" />, but by a text field which is associated

with the two images, icon fonts or specific styles, to show the increase and decrease

"buttons".

The following code shows how to reproduce the behavior of HTML spinbuttons, when

the native spinbuttons cannot be used.

This code is based on the "Spinbutton" design pattern found in ARIA Authoring Practices

Guide (APG) of the W3C.

Core HTML base

<p id="label">Spinbutton label</p>

<div>

 <input type="text" role="spinbutton" aria-valumin="0" aria-

valuemax="10" aria-valuenow="8" aria-labelledby="label" />

</div>

ARIA roles, states and properties

• role="spinbutton" must be applied to the spinbutton.

• The aria-valuemin attribute must be applied to the spinbutton. Its value

must be set to the minimum value allowed for the spinbutton.

• The aria-valuemax attribute must be applied to the spinbutton. Its value

must be set to the maximum value allowed for the spinbutton.

• The aria-valuenow attribute must be applied to the spinbutton. Its value

must be set dynamically to that of the spinbutton.

https://www.w3.org/WAI/ARIA/apg/patterns/spinbutton/examples/datepicker-spinbuttons/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/

August 20, 2024
Page 55/56

Main rich interface components accessibility guidelines

• The spinbutton must be programmatically associated with its label using

aria-labelledby:

o The spinbutton label should have an id attribute set to a unique value.

o The spinbutton should have the aria-labelledby attribute set to the

value of the id of the label of the spinbutton.

• The aria-hidden="true" attribute must be added to each image that

simulates an increase or decrease button.

Keyboard interaction

Keyboard interaction is the same as for classic HTML spinbuttons.

Tab

When the user tabs to the spinbutton, the focus is placed in the text field. When the focus

is in the text field pressing the Tab key allows the user to leave the spinbutton.

Shift + Tab

This key combination has the same behavior as the Tab key but in the reverse order.

Up arrow

When the focus is on the text field, this key increases the value of the text field one step.

Down arrow

When the focus is on the text field, this key decreases the value of the text field one step.

Home

When the focus is on the text field, this key decreases the value of the text field to its

minimum.

End

When the focus is on the text field, this key increases the value of the text field to its

maximum.

August 20, 2024
Page 56/56

Main rich interface components accessibility guidelines

Expected behavior

• The keyboard focus remains on the text field during the use of the spinbutton,

and remains there until the Tab key is pressed.

• When the focus is on the text field, the value of the spinbutton can be modified

by typing values on the keyboard or by using the Up arrow , Down arrow ,

Home and End .

• The increase and decrease buttons are not keyboard focusable, but can be

operated with a mouse.

• The value of the aria-valuenow attribute must be updated dynamically so

that it is always identical to the value of the spinbutton.

• The value of the spinbutton cannot be greater than the aria-valuemax attribute.

• The value of the spinbutton cannot be less than the aria-valuemin attribute.

	Main rich interface components accessibility guidelines
	Table of contents
	Introduction
	Context and objectives
	Who should read this document, and how to use it?
	Contact
	License agreement

	Rich applications components
	Accordions
	Principle
	Core HTML base
	ARIA roles, states and properties
	Keyboard interactions
	Note
	Components

	Modal window
	Principle
	Core HTML base
	Modal window with a title displayed on the screen
	Modal window without a title displayed on the screen

	ARIA roles, states and properties
	Keyboard interactions
	Expected behavior
	When the modal window is displayed (open)
	When the modal window is hidden (closed)

	Components

	Alert dialog
	Principle
	Core HTML
	Alert dialog with a displayed title
	Alert dialog without a displayed title

	ARIA roles, states and properties
	Keyboard interactions
	Expected behavior
	When the alert dialog is displayed
	When the modal alert window is closed

	Components

	“Show more” buttons
	Principle
	Core HTML base
	Before activation of the button
	After activation of the button

	ARIA roles, sates and properties
	Keyboard interaction
	Expected behavior
	Notes

	Radio buttons customized using ARIA
	Principle
	Core HTML base
	ARIA roles, states and properties
	Keyboard interaction
	Note
	Components

	Radio buttons customized using CSS
	Principle
	Core HTML base
	CSS base

	Carousels
	Principle
	Core HTML base
	ARIA roles, states and properties
	Keyboard interaction
	Expected behavior
	Notes
	Components

	Checkboxes customized using ARIA
	Principle
	Core HTML base
	ARIA roles, states and properties
	Keyboard interaction
	Note
	Components

	Checkboxes customized using CSS
	Principle
	Core HTML base
	CSS base

	Customized tooltips
	Principle
	Core HTML base
	ARIA roles, states and properties
	Keyboard interaction
	Expected behavior
	Note
	Components

	Drop-down menu
	Principle
	Core HTML base
	ARIA roles, states and properties
	Keyboard interactions
	Note

	Hamburger menu
	Core HTML base
	ARIA roles, states and properties
	Keyboard interactions
	Expected behavior
	Note
	Components

	Notification messages
	Principle
	Core HTML base
	When the page is loaded
	When the alert is triggered

	ARIA roles, states and properties
	Expected behavior
	Note

	Alert messages
	Principle
	Core HTML base
	When the page is loaded
	When the alert is triggered

	ARIA roles, states and properties
	Expected behavior
	Note

	Tab panels
	Principle
	Core HTML base
	ARIA roles, states and properties
	Keyboard interaction
	Note
	Components

	Show / hide panels
	Principle
	Core HTML base
	ARIA roles, states and properties
	Keyboard interactions
	Expected behavior
	Note
	Components

	Customized sliders
	Principle
	Core HTML base
	ARIA roles, states and properties
	Keyboard interaction
	Expected behavior
	Note
	Components

	Customized spinbuttons
	Principle
	Core HTML base
	ARIA roles, states and properties
	Keyboard interaction
	Expected behavior

